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Abstract. In many cases where an algorithm is provably NP-hard, this intract-
ability is a worst-case bound that only applies to pathological inputs. In these
cases, by exploiting knowledge of the specific structure of “real-world” inputs,
the algorithm can be shown to be much more efficient in the “normal” case.
However, when studying a new problem, this can be hard to show if it is not
obvious which structural constraints exist, and which ones would lead to in-
creases in efficiency. In this paper, we show how one can describe the underly-
ing problem declaratively as a CSP process and use the FDR refinement checker
to explore the complexity space of the problem. By knowing which optimizations
FDR uses to find solutions more efficiently, we can determine under which condi-
tions the worst-case intractable algorithm executes efficiently, and incorporate
analogous optimizations into the algorithm to exploit these conditions.

1. Introduction
The class NP is often used as a benchmark for deciding when an algorithm or problem is
“difficult”; whereas the space requirements and running time of an algorithm with a poly-
nomial solution will increase reasonably with the size of the input, NP space requirements
and running times tend to scale exponentially. Algorithms in NP are often therefore only
realistically useful on the most trivial of inputs.

Of course, the fact that a particular algorithm is in NP does not necessarily imply
that the underlying problem is itself difficult — it might be that a polynomial-time algo-
rithm exists but has not yet been discovered. NP-hard algorithms are those where this is
highly unlikely; any polynomial-time solution to an NP-hard problem could be used to
create polynomial-time solutions to every other algorithm in NP. Though it has not been
proved, our current intuition is that P 6= NP, and therefore that NP-hard problems cannot
have any polynomial-time solutions.

Sometimes, however, this is only a worst-case bound on the complexity of an al-
gorithm. There might be classes of inputs for which the problem simplifies and becomes
tractable. For example, this is exactly the case with Petri nets [Petri 1962, Petri 1963]:
in the general case, the reachability problem is EXPSPACE-complete. However, as sum-
marized in [Esparza 1998], by introducing constraints on the structure of the Petri net,
different classes are formed with tractable reachability algorithms. If we can guarantee
that each place in the Petri net will only ever contain at most one token, then reachability
becomes PSPACE-complete. If, in addition, the net contains no cycles, reachability be-
comes NP-hard. If we further stipulate that each place in the Petri net can have at most
one output transition, reachability becomes polynomial.



When studying a new problem domain, an important task is to discover which
of the associated algorithms are NP-hard, and if possible, which simplifications of the
problem domain make these algorithms tractable in the “normal” case. Finding these
subproblems is not always trivial; often, a lot of analysis and intuition is needed before an
appropriate breakthrough is made.

In this paper we present an alternative, empirical, approach, applying it to a new
data transformation discovery algorithm that is provably NP-hard in the worst case. We
first create a description of the problem using the Communicating Sequential Processes
process algebra (CSP) [Hoare 1985, Roscoe 1998]. This mathematically rigorous and
machine-readable problem description can then be solved by the FDR refinement checker
[Roscoe 1994, Scattergood 1998]. By using many varying inputs and slight modifications
to the process description, FDR can be used to analyze the space and time complexity of
different algorithmic solutions to the problem. With an understanding of the particular
normalizations and optimizations that FDR uses “under the hood”, we can then use the
same strategies when developing our own algorithmic solution.

There are many other examples in the literature of empirical approaches to analyz-
ing the complexity of an algorithm or program (including, but not limited to, [Jones 1986,
Breese et al. 1998, Hunt et al. 1998]). However, these approaches focus on existing low-
level implementations of an algorithm. Our approach differs from these examples in that
we examine a high-level description of the problem, written in a declarative style. This
allows us to identify useful optimizations and an overall implementation strategy before
developing a low-level algorithm to solve the problem.

The rest of this paper is organized as follows. Section 2 presents an overview of
our particular problem of interest. Section 3 shows how the problem can be formulated
as a refinement between two CSP processes. Section 4 shows how FDR can be used
to analyze the space and time complexity of the problem, and how different changes to
the CSP script affect the complexity of the solution. In Section 5, we interpret these
measurements in terms of real-world transformation graphs, and use these insights to
develop a useful algorithmic solution. Finally, Section 6 discusses our results and suggests
areas for future research.

2. Problem description
The problem that we consider involves the automated discovery of data transformations.
In a heterogeneous environment like the Internet, communicating applications will likely
encode and structure their data differently, even if the data represents logically similar
real-world concepts and objects. Since rewriting the applications to use an identical data
model will often be an infeasible solution, some form of data transformation is needed
to reconcile these differences. Ideally, the discovery of these transformations would be
automated, reducing the amount of effort needed to link two disparate applications.

The approach taken in [Creager and Simpson 2006] is to exploit the fact that trans-
formations are composable. We assume that some atomic transformations will necessarily
be written manually; however, given a sufficient number of them, a directed graph can be
constructed with datatypes as nodes and atomic transformations as edges. An example
transformation graph, containing datatypes and transformations for a variety of micro-
scope image formats and their associated metadata, is shown in Figure 1. Since atomic



transformations are composable, paths in the graph represent executable compound trans-
formations, and an efficient pathfinding algorithm, such as Dijkstra’s [Dijkstra 1959] or
Bellman-Ford [Bellman 1958, Ford and Fulkerson 1962], can be used to discover them.
Further, the same graph can be used to support use cases with different non-functional
requirements through the appropriate use of edge weights.
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Figure 1. A transformation graph for images and associated metadata

Unfortunately, since graph edges have exactly one source node and exactly one
sink node, this graph-based model limits transformations to a single input and output. If
we want to support transformations of higher arity, a more complex model is needed. An
obvious extension is to use hypergraphs [Berge 1973, Berge 1989, Ausiello et al. 1983],
whose hyperedges can connect multiple nodes. Figure 2 shows how a polyadic transfor-
mation graph could be represented as a hypergraph. The analogous shortest hyperpath
algorithm would then be used to discover compound transformations. Hyperpaths are
more complex than standard paths, in that there are a number of ways to calculate a
hyperpath’s weight given the weights of its constituent edges [Italiano and Nanni 1989,
Ausiello et al. 1992]. For instance, if an edge appears in a hyperpath multiple times, its
weight can either be counted exactly once, or once for each of its appearances in the
hyperpath. These different metrics yield different complexities for the shortest hyper-
path problem, some of which are polynomial; however, the metric that we would use for
transformation discovery, cost, is NP-hard.
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Figure 2. A polyadic transformation graph represented by a hypergraph

The hope, however, is that this is a worst-case bound for pathological transfor-
mation graphs, and that for more common “real-world” graphs, the discovery algorithm
would be tractable. In the remainder of this paper, we use CSP and FDR to investigate
this hypothesis.



3. CSP implementation
In this section, we describe a prototype implementation of the transformation discovery
problem described in the previous section, written in CSP. The usual strategy for working
with CSP specifications is to define two processes: one providing a specification of what
the system should do, and the other describing a particular implementation of the system.
One then uses a refinement checker such as FDR to verify that the implementation refines,
and therefore satisfies, the specification.

For our transformation graph problem, we will use the first process to describe the
structure of the graph, and the basic rules about when transformations can be executed.
We will use the second process to describe the specific property that we are looking for:
that, given instances of a particular set of initial datatypes, there is some sequence of
transformations that can be executed that will yield instances of a different set of desired
datatypes. Note that we do not describe how to find solutions; we only provide a declara-
tive description of the problem structure and of valid solutions.

3.1. Graph structure
We start by declaring the CSP types needed for the specification. The Datatype type
represents a single datatype from the transformation graph. (The overloading of the term
“datatype” is unfortunate but unavoidable; we will use “type” to refer to the syntactic
concept in the CSP language, and “datatype” to refer to a node in a transformation graph.)
A Transformation has a unique identifier, and is defined by two sets of datatypes: one for
its inputs and one for its outputs. A particular transformation graph can be encoded by
providing concrete values for the Datatype type and the Transformations, GivenTypes, and
DesiredTypes variables. The Transformations variable contains all of the transformations
in the graph. The GivenTypes variable specifies which datatypes we are given instances
of, while DesiredTypes specifies which datatypes need to be generated by the discovered
compound transformation.

datatype Datatype, XformID
nametype Transformation = XformID × (P Datatype) × (P Datatype)
variable Transformations, GivenTypes, DesiredTypes

Next we define the event channels that will be used in the specification. The
have channel signals when a datatype has become available, regardless of how it was ob-
tained. The given channel is used to notify other processes which datatypes are given. The
execute channel signals that a particular atomic transformation has executed. The produce
channel indicates that a datatype has been produced as the output of some transformation.
Finally, the finish channel signifies that a datatype has been used as the final result of the
compound transformation.

channel given, have, produce, finish : Datatype
channel execute : XformID

Now we can construct the CSP process that represents the structure and rules of
a transformation graph. We follow the standard approach of declaring subprocesses for
each of the individual properties or constraints of the system, which we then compose
together into a final specification using parallel composition.



We first define a MakeAvailable process that is responsible for generating have
messages whenever a datatype instance becomes available. This can happen in one of
two ways: we can be given the instance (in which case we match a given message), or it
can be generated by the execution of a transformation (in which case we match a produce
message).

α(MakeAvailable) = {|given, produce, have|}
MakeAvailable =

given?t → have!t → MakeAvailable
2

produce?t → have!t → MakeAvailable

Next we define a Given process that generates the initial given messages for the
datatypes that we start with. The alphabet of this process contains all given messages,
even though only certain given messages are created; this ensures that CSP events only
appear for those datatypes that actually are given to us.

α(Given) = {|given|}
Given = ||| t : GivenTypes • given!t → Stop

Next we define a process to handle the finish messages. We keep track of which
datatypes are available; when one of the DesiredTypes becomes available, we allow at
most one a finish event for it.

α(Finish) = {|finish, have|}
Finish =

let
Have(avail, finished) =

have?t → Have(avail ∪ {t}, finished)
2

finish?t : (avail \ finished) ∩ DesiredTypes →
Have(avail, finished ∪ {t})

within
Have(∅, ∅)

Our next process is responsible for preventing a particular transformation from
executing before all of its inputs are satisfied. We define it similarly to the Finish process:
we keep track of which input datatypes are available. Once all of them are available, we
allow any number of execute events to occur for this transformation.

α(XformPrereq( (id, inputTypes, outputTypes) )) =
{execute.id} ∪ { t : inputTypes • have.t }

XformPrereq( (id, inputTypes, outputTypes) ) =
let

Have(avail) =
(avail = inputTypes) & execute!id → Have(avail)
2

have?t : inputTypes → Have(avail ∪ {t})



within
Have(∅)

For the transformation graphs described in this chapter, we assume that every
datatype is reusable: that any instance of the datatype can be used multiple times with-
out penalty. For this reason, we do not remove any elements from the set of available
datatypes in the Finish and XformPrereq processes. If desired, we could use a more
complicated definition for these processes to limit the number of times that a particular
datatype could be consumed.

The above process verifies that the prerequisites are satisfied for a single trans-
formation. We must use parallel composition to combine them together: since multiple
transformations might be waiting for the same datatype to satisfy an input, they must be
notified of its availability simultaneously. This means that they must synchronize on the
corresponding have event. This parallel composition yields the Prereqs process, which
verifies the prerequisites of each atomic transformation simultaneously.

α(Prereqs) =
⋃
{ xf : Transformations • α(XformPrereq(xf )) }

Prereqs = ‖ xf : Transformations • XformPrereq(xf )

Next we define a process that describes what happens when a particular trans-
formation is executed. It waits for the appropriate execute event, after which it outputs
produce events for each output datatype. We use replicated interleaving to allow the
produce events to occur in any order. The overall process then ends in Skip.

α(ExecuteOneOnce( (id, inputTypes, outputTypes) )) =
{execute.id} ∪ { t : outputTypes • produce.t }

ExecuteOneOnce( (id, inputTypes, outputTypes) ) =

execute!id → (||| t : outputTypes • produce!t → Skip)

The ExecuteOneOnce process is parameterized on the definition of a transforma-
tion; now we instantiate this process for each of the actual transformations in the graph.
The ExecuteAnyOnce process allows the environment to execute any one transformation.
Its alphabet consists of all of the produce messages, since we want to prevent datatypes
that do not play a part in some transformation from being produced.

α(ExecuteAnyOnce) = {|execute, produce|}
ExecuteAnyOnce = 2 xf : Transformations • ExecuteOneOnce(xf )

With the ExecuteAnyOnce process, we have allowed the environment to execute a
single transformation. Now we allow it to execute a sequence of them. Since the Execute-
AnyOnce process ends with a Skip (due to it being defined in terms of ExecuteOneOnce),
we can accomplish this with a recursive sequential composition. The Execute process
allows any sequence of transformations to be executed; it does not need to take into ac-
count whether a transformation has its inputs satisfied, since this constraint is handled by
the Prereqs process.



α(Execute) = α(ExecuteAnyOnce)
Execute = ExecuteAnyOnce o

9 Execute

Finally, we can merge together all of the previous processes using parallel com-
position. This yields an overall Graph process that satisfies the constraints introduced
by each of its constituent parts. We also provide a view of the graph (GraphOutputs)
that hides everything except for the finish channel, since our description of a successful
solution will only depend on which final datatypes are produced.

α(Graph) = {|given, have, execute, produce, finish|}
Graph = MakeAvailable ‖ Given ‖ Finish ‖ Prereqs ‖ Execute

α(GraphOutputs) = {|finish|}
GraphOutputs = Graph \ (α(Graph) \ {|finish|})

3.2. Transformation discovery process
Next we construct the CSP process that tests whether all of the desired datatypes are
eventually produced by some compound transformation. We can do this by constructing
an appropriate traces refinement. We construct a WantT process that allows the appropriate
finish events to occur in any order:

WantT(∅) = Stop
WantT(types) = ||| t : types • finish!t → Stop

traces [[ WantT({t1, t2}) ]] =
{〈〉, 〈finish.t1〉, 〈finish.t2〉, 〈finish.t1, finish.t2〉, 〈finish.t2, finish.t1〉}

If the transformation graph can generate all of these datatypes, the GraphOutputs
process will output exactly one finish message for each. Further, since the finish messages
are not coupled to the order in which the atomic transformations are executed, Graph-
Outputs will be able to output these finish messages in any order. Thus, the traces of
WantT will be a subset of the traces of GraphOutputs. (In fact, because neither pro-
cess has any other visible events, they will be traces-equivalent.) On the other hand, if
the graph cannot generate each desired datatype, then the GraphOutput process will not
have any trace containing every finish event. Since WantT does contain such a trace, the
traces of WantT will not be a subset of the traces of GraphOutputs. Thus, the refinement
GraphOutputs vT WantT will succeed iff there is a valid solution.

Unfortunately, while this correctly tells us if a compound transformation exists,
it does not tell us what the transformation is. Luckily, we can find this information with
only slight modifications. We create a new WantF process as follows:

WantF(∅) = Stop
WantF({t}) = Stop
WantF(types) = u t : types • finish!t → WantF(types \ {t})

This differs from WantT in two respects. First, we use internal choice instead of interleav-
ing to establish each permutation of the finish events. Second, for of each these permuta-
tions, we only accept all but one of the finish events, refusing the final one.



With these changes, we can use a stable failures refinement instead. If there is a
valid compound transformation, the GraphOutputs process must allow every finish mes-
sage to occur, in any permutation. The WantF process, however, only accepts all but one
of these events; there is no situation where it will accept every finish event. Thus, the
stable failures of GraphOutputs are not a subset of the stable failures of WantF.

If, on the other hand, no compound transformation is possible, then there must
be at least one finish event that GraphOutputs refuses. Further, it will refuse this finish
event at every point during its execution. WantF can also refuse this event at any point:
either because there are other finish events for the internal choice to fall back on, or
because it is the final remaining finish event, which it always refuses. Thus, the stable
failures of GraphOutputs are a subset of the stable failures of WantF. The refinement
WantF vF GraphOutputs will therefore fail iff there is a valid solution. (Note that our
choice of model is important. The Graph process can execute the same transformation
repeatedly forever, which causes the GraphOutputs process to diverge. By using the stable
failures model instead of the failures-divergences model, we ignore these situations.)

Now, when we ask FDR to check this refinement, there are two possible outcomes.
If the refinement check succeeds, then we know that there is no valid compound trans-
formation. If it fails, then the compound transformation exists, and FDR will provide a
counterexample to the refinement. By examining this counterexample, we will find the
sequence of execute events that defines the compound transformation solution.

4. Analysis using FDR
In the previous section we presented a declarative description of the polyadic discovery
problem using the CSP process algebra. By casting the problem as a suitable refine-
ment test between two processes, we can use the FDR refinement checker as a prototype
implementation. In this section, we run this refinement check over many different trans-
formation graphs, of varying shapes and sizes, recording how efficiently FDR can find
solutions. Doing so gives us an empirical view of the complexity space of the problem,
with the hope of finding regions of inputs for which the discovery algorithm is more ef-
ficient than the NP-hard worst-case bound. Ideally, these regions will correspond to the
kinds of transformation graphs that are more likely to appear in practice, suggesting that
there is an algorithmic solution that will be useful in the normal case.

The obvious way to measure the space and time complexity of our prototype
would be to record the maximal amount of memory used by FDR, and the amount of
wallclock or actual processor time that it takes to perform the refinement check. How-
ever, we use a different metric: all measurements are made with respect to the underlying
labeled transition system (LTS) that FDR creates for a compiled CSP process. Because of
supercompilation [Goldsmith 2005], FDR will usually not have to store the process’s en-
tire abstract LTS in memory. We measure the space complexity as the size of this smaller
supercompiled LTS. The refinement check, however, must be performed on the full ab-
stract LTS, which requires explicating the supercompiled LTS into its full form. (The
explicated LTS nodes are allocated and deallocated as they are needed, so as to avoid
storing the full LTS in memory at once.) We therefore use the number of explicated LTS
states visited during the refinement check as a measure of the time complexity.

We measure the space and time complexity in this way because these measure-



ments depend only on the definition of the CSP process. The space complexity metric is
fully deterministic, since FDR will always compile a CSP process into the same LTS. The
time metric is fully deterministic, as well, since FDR will perform the same search for any
particular refinement check. Our measurements, therefore, do not depend on the speed or
load of the machine used to perform the refinement check, and are more reproducible.

4.1. Space complexity
Our first experiment is to measure the space complexity of the constructed graph repre-
sentation. The “before” curves in Figure 3 show the size of the labeled transition system
that FDR constructs for the transformation graph processes. Initially, we only consider
how the graph size is affected by the number of datatypes in the graph, so we consider
graphs containing a varying number of datatypes and no transformations. As the figure
shows, the graph size grows very quickly; graphs with more than twenty datatypes took
over an hour to compile on a reasonably fast workstation.
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Figure 3. Space required for the transformation graph process

The problem is with the Finish and XformPrereq processes, specifically with their
internal Have subprocesses. These subprocesses track the set of available datatypes as
a state parameter. Unfortunately, sets require exponential space; since FDR is compil-
ing this subprocess into a low-level operator tree, the Have process’s LTS also requires
exponential space. Luckily, we can modify the Finish process as follows:

Finish =
let

DontHave(t) = have!t → Have(t)
Have(t) =

(t ∈ DesiredTypes) & finish!t → Finished(t)
2

have!t → Have(t)
Finished(t) = have!t → Finished(t)



within
||| t : Datatype • DontHave(t)

We can make a similar modification to XformPrereq:

XformPrereq( (id, inputTypes, outputTypes) ) =
let

α(DontHave(t)) = {execute.id, have.t}
DontHave(t) = have!t → Have(t)
Have(t) = (execute!id → Have(t)) 2 (have!t → Have(t))

within
‖ t : inputTypes • DontHave(t)

Here we have redefined the internal subprocesses to only keep track of a single datatype.
We then create copies of these internal subprocesses for each of the datatypes, and use
a composition operator to combine them. For the Finish process, we can use interleav-
ing, since the subprocess alphabets are disjoint. In the XformPrereq process, on the other
hand, the subprocesses for each input datatype must synchronize on the execute event,
since all of the inputs must be available before the transformation can proceed. We must
therefore use alphabetized parallel for the composition. FDR will compile these subpro-
cesses into low-level operator trees; however, since they no longer maintain exponential
state, these trees will be small. The composition of these smaller processes is far more
efficient than the original exponential LTS; the “after” curves in Figure 3 show the same
space measurements for a graph constructed with the modified subprocesses. With this
modification, we are easily able to represent graphs with hundreds of datatypes.

Next we show how the size of the graph process is affected by the number and
arrangement of transformations in the graph. For this experiment, we fix the number
of datatypes in the graph, and examine four situations. First, as a control, we exam-
ine the graph with no transformations. Second, we introduce a single directed cycle of
transformations that encompasses all of the datatypes in the graph. Third, we consider
a graph with two directed cycles, pointing in opposite directions. Finally, we consider
the fully-connected graph, where a transformation directly connects every possible pair
of datatypes.

Figure 4 shows how the size of the LTS depends on the number of datatypes
and transformations for each style of graph. Part of the overall growth comes from the
datatypes, and part comes from the transformations. The contour lines show that the
resulting surface is planar, yielding an O(D + T) overall size for a graph’s LTS. The XY
plane represents how the number of transformations depends on the number of datatypes
for a particular style of graph; projecting a particular graph’s curve up onto the growth
plane then yields a single growth curve for that style of transformation graph.

4.2. Time complexity
Next we examine the time complexity of the algorithm. We again look at four different
“shapes” of transformation graph, shown in Figure 5. In all cases, we are seeking a
transformation between the source datatype S and the destination datatype D. The shapes
differ in the number of additional datatypes in the graph, and in how the datatypes are
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connected. In part (a), we have a single sequence of datatypes A1 through An, with a
single path through the graph from S to D. In part (b), we have the same sequence of
datatypes A1 through An, but in this case, they are not needed to transform from S to D. In
part (c), we have two sequences of datatypes, A1 through An and B1 through Bn, between
S and D. Either one can be used as a valid transformation path. Finally, in part (d), we
again have two sequences of datatypes between S and D, but we introduce crosslinks as
well, allowing the algorithm to jump from the A datatypes to the B datatypes at any point
in the sequence. In this graph, there are n + 2 valid transformations between S and D.
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Figure 5. Transformation graph shapes used for timing analysis

The results of this analysis are shown in Figure 6. Several important conclusions
can be drawn from this data. In most cases, the number of LTS states and transitions that
must be examined during the discovery algorithm is much greater than the number needed
to represent the graph itself. This implies that with our more efficient subprocesses, FDR
is not initially instantiating the entire structure of the graph; rather, the graph process is
encoding a recipe for dynamically instantiating the graph as needed. This corresponds
with our understanding of FDR’s use of supercompilation to distinguish between low-
and high-level operator trees.
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Next, we can see that the execution time for the discovery algorithm is almost
entirely dependent on the number of transformation paths that must be checked. This
is most apparent in shape B, whose curve disappears into the X axis. Regardless of the
number of datatypes in the shape B graph, there is a constant size transformation solution.
Once the discovery algorithm finds this path, no more processing is required.

Figure 6 also shows the relationship between the complexity curves of shapes A,
C, and D. Shape C seems to be a simple modification to the graph from shape A, only
adding a single additional possible transformation path. However, since FDR is perform-
ing the equivalent of a breadth-first search, it will try to make progress down both paths
simultaneously. Only after reaching the end of both intermediary sequences will FDR
discover that only one was needed to reach the destination. Worse, it must consider every
interleaving of the transformations in the two paths while advancing through the graph.
Shape D exacerbates this problem by introducing crosslinking edges. Now, instead of
having to consider all possible permutations of two transformation paths, FDR must con-
sider the permutations of n + 2 paths. The exponential growth is much more pronounced;
whereas with shape A we were able to consider graphs with 150 datatypes in a reasonable
amount of time, shape D quickly becomes intractable after only twenty datatypes.

Finally, it is important to point out we have not eliminated the exponential growth
curve of the algorithm’s running time; we have only made it less steep. This might seem to
be a discouraging result at first, but it is in fact still useful in practice. As we will discuss
in the next section, real-world transformation graphs tend not to contain a large number
of datatypes and transformations, so any improvement in the efficiency of the discovery
algorithm for smaller graphs will be helpful.

5. Interpreting the results
Having expressed the polyadic discovery problem as a CSP process, and analyzed the
complexity space of this process, we can now interpret the measurements that we ob-



tained. First, we examine the kinds of transformation graphs that were more efficient,
identifying the features of those graphs that led to the efficiency gains, and showing why
“real-life” transformation graphs will tend to have those features. Then, we show how
this information can be used to construct an algorithmic solution.

5.1. Causes of the efficiency gains

According to our analysis, the space complexity for the discovery algorithm is fairly static,
determined by the number of datatypes and transformations in the graph. This implies
that reducing the number of datatypes in a graph can be an effective means of improving
efficiency. In practice, this strategy should prove useful, since large transformation graphs
tend to be easily separated into connected components. Intuitively, this is because the
datatypes in the graph will tend to form “clumps”, where a datatype can be transformed
into anything in its clump, but not into anything outside of it. By treating these connected
components as separate transformation graphs, we reduce the number of datatypes and
the space required to represent the graph.

The time complexity, on the other hand, depends much more on the “shape” of the
graph. As suspected, certain input graphs provide much more efficient executions of the
discovery algorithm. The major determining factor is the number of possible transforma-
tion paths that must be checked. The time required by FDR grew dramatically as edges
were added to the graph, especially when those edges added new transformation paths
without making new transformations reachable. This yields a portion of the graph where
several different possible sequences of transformations must be considered. Each of these
sequences will eventually yield the same set of available datatypes, but will require dif-
ferent intermediary sets to get there. In practice, transformation graphs will usually avoid
this inefficiency: the clumps of datatypes in a graph will not be highly interconnected,
since the entire reason for using this graph-based approach is to limit the need to write
direct transformations between datatypes.

A similar factor affecting the algorithm’s time complexity is whether the com-
pound transformation that we are seeking actually exists. FDR is able to find a solution
much faster than it is able to prove that no solution exists. Intuitively, this makes sense;
once a solution is found, FDR does not need to consider any of the remaining possibilities
and can stop processing. If there is no solution, FDR must check every state of the LTS to
prove this. In practice, a program or user will use this discovery algorithm because they
know (or can reasonably assume) that the desired compound transformation exists. For
real-world use cases, therefore, the time complexity will tend to be more efficient.

5.2. Developing an algorithm

With the insights gained by the CSP description of the problem and the efficiency anal-
ysis of using FDR as a prototype implementation, we can now construct an algorithmic
solution to the problem. In our initial formulation, our CSP processes kept track of which
datatypes were available at any given time. We can do the same using a graph, where the
nodes represent sets of datatypes. Each atomic transformation then yields several edges
in the graph. For each node that contains all of a transformation’s inputs, an edge is added
from that node. The edge’s destination is the union of the datatypes that were available
previously (the source node) and the datatypes created by the transformation (the trans-



formation’s output set). This set graph representation is shown in Figure 7(a) for the
example transformation graph from Figure 2.
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Figure 7. A set-based graph representation

Using this model, compound transformations are once again represented by paths.
Figure 7(b) shows the possible solutions that result if we are given an instance of datatype
A and want to generate instances of datatypes C and D. There are two solutions, since β
and γ can be executed in either order. Since solutions are represented by paths, we can
use a shortest path algorithm to discover compound transformations.

However, we now have the same problem as with the initial CSP implementation:
the space requirement for this representation is exponential in the number of datatypes.
The next step in our analysis was to modify the CSP process to store a recipe for lazily
deriving a transformation graph’s LTS, rather than storing it in memory in its entirety.

This strategy of lazy evaluation can be easily added to the set-based graph algo-
rithm, since a large fraction of nodes are not reachable from the {A} source node. By
only instantiating the nodes in the graph as they are encountered during the pathfind-
ing algorithm, and by stopping the processing once a shortest path has been discovered,
we will only instantiate the subset of nodes that are actually reachable. Further, as we
have shown, these reachable subsets will tend to be small for the transformation graphs
that will appear more often in practice. Thus, while we cannot improve the problem’s
worst-case intractability, we have been able to empirically derive an algorithm that allows
“real-world” transformations to be discovered efficiently and effectively.

6. Discussion
In this paper, we have described a transformation discovery problem that is provably in-
tractable in the worst case. However, many problems are intractable in the worst case
only because of pathological examples that do not arise in practice, and are more efficient
in the “normal” case. We therefore formulated a declarative CSP description of the prob-
lem, and used FDR as a prototype implementation. This allowed us to identify classes
of inputs for which solutions could be found more efficiently; using this information, we
were then able to develop an algorithmic solution that is useful for real-world inputs.

One limitation of this technique is that we must choose an appropriate sampling
of inputs if we want a true view of the problem’s complexity space. More importantly,
even if we choose an appropriate suite of test inputs, there is no guarantee that FDR
will find all of the efficient solutions that are possible. When FDR finds a compound
transformation inefficiently, for instance, this does not mean that this input graph has no
efficient solution; instead, it might be that FDR’s refinement checking strategies cannot



reproduce the necessary optimizations. In general, negative results are not indicative.
Positive results, on the other hand, represent real optimizations that can be exploited,
though even these results might not be fully optimal.

Further work in this area can proceed along three lines of enquiry. First, if we
want more confidence in our view of the problem’s complexity space, we could create
several prototypes, each using a different underlying declarative language, hoping that
each efficient class of inputs would be found by at least one of them. SAT solvers, in
particular, would be a good choice for an additional prototype; being the earliest and
most visible NP-hard problem [Cook 1971], Boolean satisfiability has inspired research
into many sophisticated optimization techniques [Gu et al. 1997].

Second, there has been a lot of research into compression and optimization tech-
niques for CSP processes. The supercompilation approach described in [Goldsmith 2005]
is integral to the lazy evaluation strategy that we have already exploited. The hierarchi-
cal compression functions described in [Roscoe et al. 1995] seem promising, as well. It
would be fruitful to see if any of these CSP compressions could be used to obtain further
optimizations.

Finally, this technique could be similarly used for any algorithm or problem that
can expressed as a refinement of CSP processes — by finding the inputs that are solved
more efficiently by FDR, and searching for common features of those inputs. This would
then hopefully provide insights into how the algorithm could be made more efficient for
those cases. One could verify this by applying this technique to several well-known NP-
hard problems, seeing if it can reproduce existing results and lead to new insights.
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