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Typing Functional Stack-Based Languages

Christopher Diggins
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Abstract
Stack-based languages (e.g. Forth (Moore 1974), Postscript (Inc.
1999)) have been around for nearly four decades. They are par-
ticularly popular today for use as intermediate languages (e.g. CIL
(ECMA 2002), JVML (Lindholm and Yellin 1999), (Morrisett et al.
1998)). This is for several reasons: they have good run-time perfor-
mance characteristics, they resemble the machine level instructions
on many computers, they are easy to implement, and they have
compact representations. In these stack-based languages instruc-
tions are not first-class values.

The Joy programming language (von Thun 2001) and the Factor
programming language (Pestov 2003) are examples of functional
stack-based languages: they allow instructions to be treated as data
and placed on the stack. These languages however are lacking a
static type system.

This paper aims to bridge the gap between statically typed im-
perative stack-based languages and untyped functional stack-based
languages by defining a type-system for a point-free functional
stack-based language.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Type Systems

General Terms Functional Programming, Stack-Based Languages,
Type Systems

Keywords Language, Functional, Stack, Programming, Type Sys-
tem, Semantics

1. Introduction
A stack-based programming language has the property that func-
tion arguments and results are passed and returned on one or more
shared stack objects. Every instruction can then be equated with
a function that maps from a tuple of stacks to a tuple of stacks.
A functional stack-based language has the property that all instruc-
tions are first class values that can be pushed and popped on a stack.
This feature however is noticeably absent from many popular mod-
ern intermediate stack-based languages such as the CIL (ECMA
2002) and JVML (Lindholm and Yellin 1999).

While several papers have been written that formally describe
the type system for non-functional stack-based languages (e.g.
(Raffalli 1993), (Stata and Abadi 1998), (O’Callahan 1998), (Pöial
2006)) these papers don’t fully address the issue of typing higher-
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order functions. Paul Levy’s paper on call by push value (CBPV)
semantics (Levy 1999) describes a type system for a functional
stack-based language with names. Levy’s type system isn’t appro-
priate for most stack-based language which are mostly point-free.

This paper’s contribution is to formally define the operational
semantics and a type-system for a point-free stack-based language
that allows all function or primitive instruction to be treated as data.

2. Cat Programming Language
This paper defines a kinding system for a subset of the Cat pro-
gramming language (Diggins 2007). The Cat semantics and syntax
are loosely based on the Joy language (von Thun 2001). For the
sake of simplicity, this paper explore the semantics of a subset of
the Cat language that excludes side-effects, and supports only inte-
ger, boolean, and function types.

Every term in Cat is a function which maps from one stack to
another. Implicit between every two terms is the function composi-
tion operation. The Cat expressiong f is equivalent to the mathe-
matical functionf ◦g. Constant literals are functions that transform
a stack into a copy of the original but with a constant on top. For
example the Cat program6 7 * will transform any stack by mak-
ing a copy of it with the value42 on top. No operation in Cat allows
a reference to previous stack-states, and as a result an implementa-
tion of Cat can use a single shared stack with destructive.

Like several stack-based languages, the core Cat language is
point-free (i.e. it has no named variables or named parameters) and
uses a postfix notation. Every term is a function which maps from
a single stack to a single stack. New functions are constructed by
either composing or quoting existing functions.

Even though Cat is a functional language, it is equally valid to
describe Cat programs as if they manipulate a single global stack
imperatively. This is possible because the Cat semantics do not
permit previous stack states to be referenced from later functions.
This enables a Cat implementation to use a stack data type with
destructive semantics. Expressing the behavior of Cat imperatively
is more succinct for informal discussion, but the functional model
is preferable for formal discussion.

3. Function Application and Function
Composition

Functional stack-based languages are examples of non-applicative
functional programming languages, whereas the lambda calculus,
and other functional programming languages (such as ML (Milner
et al. 1990) and Haskell (Hudak et al. 1992)) are examples of
applicative functional programming languages. This is because the
implicit operation between terms is function composition instead
of fucntion application.

Unlike applicative functional languages Cat does not have an
abstract syntax node for representing the operation of function ap-
plication; instead function application is implemented as a prim-
itive operation (eval) which has the type(’A (’A -> ’B) ->
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’B), where ’A and ’B are stack variable kinds. This is explained in
depth further on.

The fundamental operation in Cat is the function composition
operation. The Cat expressiona b c is equivalent to the mathemat-
ical function:c(b(a(x)))) whereas in an applicative language it
would have been equivalent toc(b)(a).

4. Cat Syntax and Semantics
The syntax and semantics of Cat are defined using small-step op-
erational semantics. This consists of a presentation of the abstract
syntactic form in figure 1, the computation rules in figure 2, the
congruence rules in figure 3, and the kind system in figure 5. The
core Cat primitive instructions and their types are defined in figure
4.

The only syntactic construct with any predefined semantic
meaning in Cat is the quoting operation which is defined using
the square brackets ‘[’ and ‘]’. When a set of terms are surrounded
by square brackets, they are pushed on to the stack as a single
anonymous function. For example the expression[2 *] pushes an
anonymous function on the stack that when evaluated multiplies
the value on the top of stack by two.

Functions can be evaluated or dequoted using the application
operation ‘eval’. The ‘eval’ operation is a primitive function, that
applies the function on the top of the stack to the rest of the stack,
yielding a new stack. For example the following expression21 [2
*] eval takes an input stack as input and yields a copy of the stack
but with the value 42 pushed on top.

5. Kinding System
The Cat type system is defined in figure 5 using an elegant poly-
morphic kinding system due to Andreas Rossberg (Rossberg 2006).
The Cat type system distinguishes between type kinds, which cor-
respond to the category of individual values, and stack kinds, which
correspond to the category of stacks of values.

The core set of typing rules for Cat are expressed in natural de-
duction in figure 6 and are also due to Andreas Rossberg (Rossberg
2006).

Type annotations in Cat are, for the most part, optional because
in most cases the types can be inferred by the compiler using
Hindley-Milner type inference (Hindley 1969), (Milner 1978) or
a generalized form thereof (Aiken and Wimmers 1993). Cat types
express the requirements of a function on the input stack and the
relation of the input stack to the output stack. The constituent parts
of a function type are called the consumption and production. The
consumption is the configuration of types required on the top of
the input stack and the production is the configuration of types
expected on the top of the output stack.

The consumption of a function corresponds very closely to
the notion of function arguments in mainstream functional and
imperative languages. The production of a function corresponds to
the results of a function. Unlike most imperative and functional
programming languages, stack-based languages have the ability to
return true multiple results without having to package them in a list
or tuple.

Function types have the form:(a0, a1, . . . , an → b0, b1, . . . bm).
The types to the left of the arrow represent the consumption, and
the types to the right represent the production. In this case the type
represents a function which can only be executed when the stack
has the typesa0 . . . an on top, where the topmost item has typean.
Once executed the topn values will have been replaced with new
values of typeb0 . . . bm, where the top item has typebm.

Types starting with a single forward quote character followed
by a lower-case letter (e.g.’a and’b) are type variables. Types
starting with an upper-case letter (e.g.’A and’B) are examples of

exp ::= expressions (a.k.a. terms)
∅ the null operation
[exp] quotation
exp exp concatenation
v constant value

prim ::= primitive functions
succ replaces top value on the stack with its successor
pred replaces top value on the stack with its prdecessor
lteq tests if the top value is greater than the next value
pop removes top value from stack
dup duplicate top value on stack
swap swaps top two items on stack
eval evaluates function on the top of the stack
dip evaluate function temporarily removing top value
if conditional evaluation
constantly constant generating function
compose function composition

bool ::= boolean values
true true value
false false value

num ::= numeric values
0 zero value
num succ successor value
num pred predecessor value

fun ::= function values
[exp] quotation

val ::= values
bool boolean value
num numeric value
fun function value

Figure 1. Syntactic Forms

exp0 0 pred7→ exp0 -1
exp0 0 succ7→ exp0 1
exp0 num0 pred succ7→ exp0 num0

exp0 num0 num0 lteq 7→ exp0 true
exp0 num0 num0 succ lteq7→ exp0 true
exp0 num0 num0 pred lteq7→ exp0 false
exp0 val0 pop 7→ exp0

exp0 val0 dup 7→ exp0 val0 val0
exp0 val0 val1 swap7→ exp0 val1 val0
exp0 val0 constantly7→ exp0 [val0]
exp0 [exp1] [exp2] compose7→ exp0 [exp1 exp2]
exp0 [exp1] eval 7→ exp0 exp1

exp0 val0 [exp1] dip 7→ exp0 exp1 val0
exp0 true [exp1] [exp2] if 7→ exp0 exp1

exp0 false [exp1] [exp2] if 7→ exp0 exp2

exp0 [exp1] [exp2] while 7→ exp0 exp1 [] [[ exp1] [exp2] while] if

Figure 2. Computation Rules

t1 7→ t1’ ⇒ [t1] 7→ [t1’]
t1 7→ t1’ ⇒ t1 t2 7→ t1’ t2
t2 7→ t2’ ⇒ t1 t2 7→ t1 t2’

Figure 3. Congruence Rules
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0 : (→ int)
succ : (int→ int)
pred : (int→ int)
lteq : (int int→ bool)
pop : (’a→ )
dup : (’a→ ’a ’a)
swap : (’a ’b→ ’b ’a)
constantly : (’a→ ( → ’a))
compose : ((’A→ ’B) (’B → ’C) → (’A → ’C))
eval : (’A (’A → ’B) → ’B)
dip : (’A ’b (’A → ’C) → ’C ’b)
if : (’A bool (’A → ’B) (’A → ’B) → ’B)
while : (’A (’A → ’A) (’A → ’A bool) → ’A)

Figure 4. The primitive operations and their types

t ::= types
′a type variable
(r → r) function type
int integer type
bool boolean type

s ::= stacks
′A stack variable
s t stack s on bottom and type t on top
∅ empty stack

Figure 5. Kinding system

T ⊢ ∅ : (ρ → ρ)
(T-EMPTY)

T ⊢ val : (ρ → r ρ)
(T-CONST)

T ⊢ exp : t

T ⊢ [exp] : (r → r t)
(T-QUOTE)

T ⊢ exp1 : (ρ1 → ρ2), T ⊢ exp2 : (ρ2 → ρ3)

T ⊢ exp1 exp2 : (ρ1 → ρ3)
(T-COMP)

Figure 6. Typing rules

stack variables. A type variable corresponds to the type of precisely
one value, whereas a stack variable corresponds to the types of zero
or more values on the stack.

It is important to note that in Cat the types(’a -> (’b ->
’c)) and (’a ’b -> ’c) are not equivalent. This differs from
the functional languages that are based on function application
(i.e. Standard ML (Milner et al. 1990)) where the two types are
equivalent and can therefore be written using the shorthand:(’a
-> ’b -> ’c).

Since every function in Cat maps from a single stack to another
stack, the production and consumption components of the function
type used in the type notation represents only the configuration of
types on the top of the stack. From a type-theoretic standpoint, it
is more accurate to include in any description of function types an
extra stack variable, representing the rest of the stack.

Because stack variables represent sets of types, they need to be
distinguished from types themselves. This is accomplished through
the use of a kinding system. Stack variables are of a separate kind

than type variables, and are closely related to Wand’s notion of row
variables (Wand 1987).

If we were to be explicit in our notation we would explicitly use
stack variables to represent the part of the stack that is unchanged
in a function. For exampole the type of the function ‘dup’, which
duplicates the top item on the stack, would be expressed asdup
: (ρ ’a -> ρ ’a ’a). Whereρ (the Greek letter rho) is a stack
variable representing the rest of the stack.

6. Type Unification
According to the T-COMP typing rule, in order for two consecutive
terms to be well typed, the stack produced by the first term must
satisfy the consumption requirements of the second term. This
requirement results in a set of constraints which must be satisfied
in order for the expression to be well-typed.

If the expression is well-typed, then there exists a principal
unifier for the set of constraints which can be found using the
Hindley-Milner type unification algorithm (Hindley 1969), (Milner
1978), (Robinson 1971).

An important part of type unification for Cat is to assure that
all variables appear for the first time on the left side of the arrow.
Any term which is unable to do so is ill-typed, and is not a valid
program.

7. Currying
Currying is the process of binding a function argument to a con-
stant value thus generating a new function which requires one
fewer arguments. This is one of the most fundamental and com-
mon functional programming techniques. In the Cat standard li-
brary a generic curry function is provided called ‘rcurry’ (for re-
verse curry), which will bind the top value on the stack to the value
below it. In other words given a value ‘x’ on the top of the stack fol-
lowed by a function ‘f’ evaluating the ‘rcurry’ function will create
a new function ‘g’ which first places ‘x’ on the stack and then calls
‘f’. The ‘rcurry’ function in Cat can be defined from the primitive
operations as ‘constantly swap compose’. Since currying is such a
fundamental operation in functional programming, it is a useful ex-
ample to demonstrate how the type of ‘rcurry’ can be derived from
the typing rules. The step by step type derivation of curry is shown
in figure 7. Keep in mind that lower-case variable names are type
variables, upper-case letters are explicit stack variables, and greek
variable names are implicit stack variables.

constantly :(ρ1 a1 → ρ1(σ1 → σ1 a1))
swap :(ρ2 a2 b2 → ρ2 b2 a2)

COMP
constantly swap :(ρ1 a1 → ρ2 b2 a2)
(ρ1(σ1 → σ1 a1)) = (ρ2 a2 b2)
b2 = (σ1 → σ1 a1), ρ1 = ρ2a2

UNIFY
let a3 = a2, let b3 = a1, let ρ3 = ρ2, let σ3 = σ1

constantly swap :(ρ3 a3 b3 → ρ3(σ3 → σ3 b3)a3)
compose :(ρ4(A4 → B4)(B4 → C4) → ρ4(A4 → C4))

COMP
constantly swap compose :(ρ3 a3 b3 → ρ4(A4 → C4))
(ρ3(σ3 → σ3 b3)a3) = (ρ4(A4 → B4)(B4 → C4))
a3 = (B4 → C4)), σ3 b3 = B4, σ3 = A4, ρ3 = ρ4

UNIFY
let A5 = A4, let b5 = b3, let C5 = C4, let ρ5 = ρ4

constantly swap compose
: (ρ5(A5 b5 → C5)b5 → ρ5(A5 → C5))

Figure 7. Type Derivation of the ‘rcurry’ Function
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8. Type Safety
By definition a Cat program (P ) is well-typed if the stack (S) pro-
duced by the program (P ) is well-defined given an empty stack as
input. A program (Pn) consisting of a sequence of termst0 . . . tn−1

is well-typed iff∀i : i ≤ n the programPi = t0 · · · ti is well-typed
(ti represent a term). The empty program (P0) is well-typed and the
empty stack (S0) is well-defined.

S t : (ρ σ0 → ρ σ1) 7→ S′ ⇒ S = θ σ0 , S′ = θ σ1

Figure 8. Type progression

The type progression rule in figure 8 shows that when a well-
typed term (t) of type (ρ σ0 → ρ σ1) (whereρ, σ0, and σ1

are stack kinds, representing sequences of types on the stack) is
applied to a well-defined stack (S) the resulting stack (S′) is well-
defined iffS has the types contained in the stackσ0 at the top. The
type progression rule goes on to state that the resulting stack will
contains the same types as the consumed stack, but with the types
in σ0 replaced with the types inσ1.

Quotations are held to a slightly weaker requirement of type
soundness. A quotation (Q = [t0 . . . tn]), is well-typed iff ∃Sq

such thatSq t0 t1 ... tn is a well-typed program.

9. Related Work
Stack-based application programming languages, such as Forth
(Moore 1974), Desktop Calculuator (DC) (Morris and Cherry
1978), Postscript (Inc. 1999), Joy (von Thun 2001) and others, have
been around for nearly four decades. At the same time research in-
terest in stack-based languages has largely been focused on either
imperative stack-based languages (e.g. Java Virtual Machine Lan-
guage (JVML) (Lindholm and Yellin 1999) and Common Interme-
diate Language (CIL) (ECMA 2002)), or functional languages with
some stack facilities (e.g. Stack-based Typed Assembly Language
(STAL) (Morrisett et al. 1998)).

Historically, stack-based languages have been mostly impera-
tive in nature, with little or no support for functional programming.
Manfred von Thun’s programming language Joy made a significant
contribution by combining the stack-based semantics of languages
like Forth and Postscript and ideas from both the Functional Pro-
gramming (FP) system described by John Backus (Backus 1978)
and combinatorial logic (Curry and Feys 1958). Joy in turn has
inspired several other functional stack-based languages , one of
the most active projects being the Factor programming language
(Pestov 2003). Recently Lynas and Stoddart also proposed extend-
ing Forth with Lambda expressions (Lynas and Stoddart 2006).

10. Conclusion and Future Directions
The type system presented here for the Cat language could be
applied to other functional stack-based languages (such as Joy
or Factor) to design a static typed ssytem for those language.
Similarly the idea of type-safe quotations and evaluation functions
could be easily integrated into existing statically-typed stack-based
langauges (such as MSIL or JVML). Future planned extensions for
the type system presented in this paper include typed lists, record
types, recursive types, and algebraic types.
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