
Call-by-Value Combinatory Logicandthe Lambda-Value CalculusJohn Gateley and Bruce F. Duba�Rice UniversityAbstractSince it is unsound to reason about call-by-value languages using call-by nameequational theories, we present two by-value combinatory logics and transla-tions from the �-value (�v) calculus to the logics. The �rst by-value logic isconstructed in a manner similar to the �v-calculus: it is based on the by-name combinatory logic, but the combinators are strict. The translation isnon-standard to account for the strictness of the input program. The secondby-value logic introduces laziness to K terms so that the translation can pre-serve the structure of functions that do not use their argument. Both logicsinclude constants and delta rules, and we prove their equivalence with the�v-calculus.1 IntroductionThe translation of functional languages into combinatory logics captures the essence ofcompilation both from a theoretical as well as a practical perspective. Most of the researchon this topic concerns the traditional call-by-name �-calculus and combinatory logic.However, most realistic programming languages rely on call-by-value as the parameter-passing mechanism, for which a call-by-name combinatory logic (CL) is unsound. Inaddition, an evaluator for a language usually does not produce normal forms as in the�-calculus [12], but instead produces values. For illustration of the mismatch between the�v-calculus and CL, consider the following expression (in the �v-calculus):(�xy:y)((�w:ww)(�w:ww))This loops forever, while the corresponding combinatory logic expression:(KI)((SII)(SII))reduces to I.�Both authors were supported in part by NSF grant CCR 89-17022 and Darpa/NSF grant CCR 87-20277.

Moreover, unlike purely theoretical systems such as CL, programming languages alsocontain constants. Again, traditional theorems of equivalence between lambda theoriesand combinatory logics do not account for this fact, which means that such results arenot really applicable to programming languages.A solution to this problem is to translate by-value �-terms with constants into a by-value combinatory logic with constants. Just as languages are paired with calculi [12],calculi should be paired with combinatory logics. In this paper, we show that a variantof Goodman's simpli�ed combinatory logic [6] corresponds, in the sense of Curry [5], toPlotkin's �v-calculus [12]. We also present a technique for determining if a combinatorylogic and calculus are equivalent when both include constants. Unfortunately, the revisedby-value combinatory logic leads to ine�cient implementations, since the translation al-gorithm cannot preserve redexes that occur within abstractions. We solve this problemby introducing a modicum of laziness into the logic, together with new translation func-tions. This allows shorter combinator programs to be derived from �v-calculus programsby preserving more of the original syntactic structure.In section 2 we review the �-calculus, CL, and the equivalence between them. Sec-tion 3 covers Plotkin's �v-calculus. Section 4 presents a variant of Goodman's by-valuecombinatory logic, de�nes an abstraction algorithm and translations between the combi-natory logic and �v-calculus. Goodman's combinatory logic is proved equivalent to the�v-calculus. Next, in section 5 we present an improved combinatory logic and prove itsequivalence with the �v-calculus. The conclusion is presented in section 6.Notation & Conventions: Boldface letters, likeCL or �, denote equational theories.Italic letters, like CL, and the greek letter � denote term languages. The notation FVdenotes the free variables of a term or terms. Substitution is hygienic. That is, whensubstituting a term N for a variable x in a term M , we assume that the free variables ofN and the bound variables of M are disjoint.2 BackgroundChurch [3] developed the �-calculus [1]. Its term language � is:M ::= x j �x:M jMMand the axiom and inference rule is:(�x:M)N = M [x=N] �M = N) �x:M = �x:N �where M [x=N] denotes substitution. The equational theory � is generated from � andthe usual congruence axioms/inference rules of Figure 1, and we write � `M = N whenan equation is valid in �.

M = M (re
exivity)M = N) N = M (symmetry)M = N;N = L) M = L (transitivity)M = N) ML = NL; LM = LN (compatibility)Figure 1: These axioms and inference rules are present in all equationaltheories of this paper.Sch�on�nkel [10] and Curry [4] independently developed combinatory logic, based onthe combinators S and K. The term language CL is:M ::= x j S j K jMM ;the axioms are: KMN = MSLMN = LN(MN):The equational theory generated, including the axioms and inference rules of �gure 1, isdenoted by CL. Curry [5] also developed functions, [�]� and [�]CL, that translate termsfrom CL to � and vice versa, respectively. However, CL is strictly weaker than �: someterms that are not equal in CL have translations that are equal in �. Curry proved theK = ��xy:KxyS = ��xyz:Sxyz��xy:S(Kx)(Ky) = ��xy:K(xy)��xy:S(S(KK)x)y = ��xyz:xz��xyz:S(S(S(KS)x)y)z = ��xyz:S(Sxz)(Syz)Figure 2: The Axiom Set A�equivalence of CL and � in three ways. First, he added �ve axioms, A� (see Figure 2),to CL to provide the extra power needed and proved the equivalence.

Theorem 2.1 (Curry) The �-calculus and CL + A� are equivalent in the followingsense:1. � ` [[M]CL]� =M2. CL+A� ` [[M]�]CL =M3. � `M = N , CL+A� ` [M]CL = [N]CL4. CL+A� `M = N , � ` [M]� = [N]�Remark: We use the notation T1 � T2 to denote the correspondence, in the sense ofTheorem 2.1, between a CL-theory T1 and a �-theory T2.Second, Curry [5, pages 201|202] proved that a single inference rule, � 0, is equivalentto A�. Let Funs be the syntactic category of functions; for the �-calculus, functions are�-terms, for CL they are terms of the form: S;K;SM;KM;SMN . Then � 0 is:8F1; F2 2 Funs; F1x = F2x) F1 = F2 if x 62 FV (F1; F2) (� 0)This new inference rule formalizes the notion of extensionality for functions.Theorem 2.2 (Curry) CL+ � 0 � �Adding � 0 to the �-calculus does not change the theory, so in fact � = � + � 0. This isnot true for the impure �-calculus with constants. For example, the term �x:succ x isnot provably equal to succ without using � 0. In addition, the theories generated from theaxiom set A� and from � 0 are the same:Theorem 2.3 (Curry) CL+A� `M = N , CL+ � 0 `M = N .Third and �nally, extensionality is added to both CL and � and then proved theirequivalence. The infererence rule � captures a stronger notion of extensionality than � 0:Mx = Nx) M = N if x 62 FV (M;N) (�)where FV (M;N) is the set of free variables in M and N . Unlike � 0, it applies to allterms instead of terms that are syntactically functions. In the presence of constants it isunsound1.Theorem 2.4 (Curry) CL+ � � � + �.Of course, �+ � is not the same equational theory as �.1Which is why Dana Scott, Robert Cartwright, and others have argued that � is too strong and shouldnot be called the axiom of extensionality.

3 The �v-CalculusPlotkin's �v-calculus is a by-value variant of the traditional �-calculus. In this sectionwe describe its syntax and semantics. The calculus presented here is a slight variationof Plotkin's �v-calculus: it has functions as a separate syntactic domain to facilitate thede�nition of an extensionality rule in the presence of constants.De�nition 3.1. (�v)Syntactic Domains: x 2 Vars (variables)a 2 Consts (constants)af 2 Fun-Consts (function constants)V 2 Vals (values)F 2 Funs (functions)M;N 2 �v (�v terms)Syntax: F ::= �x:M j afV ::= x j a j FM ::= V jMMAxioms and Inference Rules:(�x:M)V = M [x=V] (�v)afV = ��(af ; V) if ��(af ; V) is de�ned (�)M = N) �x:M = �x:N (�)F1x = F2x) F1 = F2 if x 62 FV (F1; F2) (� 0)As usual, the axioms and inference rules of �gure 1 are included. We use the notationM [x=N] to denote the result of substituting all free occurrences x in M by N . The set offree variables of a term M , FV (M), and substitution are de�ned as usual [1]. When anequation M = N is derivable in the �v-calculus we write �v ` M = N .The delta axiom is used to provide meaning to terms of the form afV , such as succ 5.The � 0 inference rule provides extensionality, and is based on the syntactic category forfunctions. Functions are either �-terms or functional constants. The calculus needs someform of extensionality, otherwise equations such as �x:succ x = succ are not provable. Fullextensionality (�) is too strong; it is unsound with respect to operational equivalence [12]because it does not respect values. Even with �-value, �x:3x = 3 because (�x:3x)x = 3xfor all x. Then, if the �v-calculus contains a constant function integer?, we can show that(integer? (�x:3x)) = false, and (integer? 3) = true, resulting in an inconsistent theory.Thus, � 0 is the appropriate choice.

4 A Simple Combinatory LogicThe combinatory logic presented here is a variant of Goodman's [6]: we also includefunctional extensionality (� 0) and constants. We refer to it as CLv; it is based on theby-value combinators S, K and I2.De�nition 4.1. (CLv)Syntactic Domains: x 2 Vars (variables)a 2 Consts (constants)af 2 Fun-Consts (function constants)U; V;W 2 Vals (values)F 2 Funs (functions)M;N 2 CLv (CLv terms)Syntax: F ::= af j I j S j K j SV j SV V j KVV ::= a j x j FM ::= V jMMAxioms and Inference Rule:IV = V (I)KUV = U (K)SUVW = UW (V W) (S)afV = �cl(af ; V) if �cl(af ; V) is de�ned (�)F1x = F2x) F1 = F2 if x 62 FV (FF 0) (� 0)Again, the set of free variables of a termM : FV (M), and substitution are de�ned asusual, and the axioms and inference rules include those of �gure 1. When CLv proves anequation M = N , we write CLv `M = N .Functions (F) are incomplete I, K, or S applications in the sense that they must beapplied to at least one argument, possibly more, to match the left hand side of the I,K, or S axioms. For example, in order for the K axiom to be applied, K must appearwith two arguments. Thus, the term K is still expecting arguments and is a function.The same is true of KV for arbitrary values V . In addition, function constants are alsofunctions.Values, as in the �v-calculus, are either functions, constants or variables.As with � and CL, the �v-calculus is stronger than CLv. As noted before, theapproach of adding full extensionality to both systems is unsound due to the presence of2The combinator I can be replaced by the term SKK.

constants. A modi�cation of Curry's �rst approach, namely extending CLv with a set ofaxioms similar to A�, yields a complex system with an in�nite set of axioms. It is an openquestion whether there exists a �nite set of axioms that would make CLv equivalent tothe �v-calculus. Thus we are left with the second approach, using the inference rule � 0 toprove the equivalence of the two systems.Next we develop translation functions for mapping terms from �v to CLv and viceversa. The translation functions must preserve functions and values, otherwise the prob-lems presented in the introduction occur. The idea behind the translation is simple:Variables and constants are drawn from the same set, so they map to themselves. Ap-plication is present in both systems, so applications map to applications. Functions areslightly more di�cult, they require an abstraction algorithm to create CLv functions thathave the same behavior as �-terms. Finally, the combinators S, K, and I must be mappedto �-terms that have the same behavior.To simulate �x:M , the abstraction algorithm constructs a combinator term that usesits argument in the same way thatM uses x. Informally, the term �x:x takes an argumentand returns it; this is what the I combinator does. The term �x:y takes an argument andignores it, thus Ky will have the same e�ect. Finally, the term �x:MN takes an argument,replaces all free occurrences of x inM and N with that argument, and applies the resultingterms. Another way of writing this is: �x:(�x:M)x((�x:N)x). So in this case, letM1 andN1 be the combinatory terms for �x:M and �x:N respectively, then using SM1N1 willhave the desired e�ect. This is the simplest algorithm for simulating abstraction as wellas handling the issue of preserving values. The translation algorithm is called �1 followingBarendregt [1, page 157].De�nition 4.2. (�1)�1 : Vars� CLv ! CLv (simulating �)�1x:x � I�1x:c � Kc if c 6� x 2 Vars or c 2 Consts or c 2 fS;K; Ig�1x:(MN) � S(�1x:M)(�1x:N)The translation from the �v-calculus to CLv merely uses the abstraction algorithm �1as needed.De�nition 4.3. ([�]CL)[]CL : �v ! CLv [x]CL � x[a]CL � a[af]CL � af[�x:M]CL � �1x:[M]CL[MN]CL � [M]CL[N]CLFor the translation from CLv to �v, the combinators are mapped to appropriate �-terms based on their axioms.

De�nition 4.4. ([�]�)[]� : CLv ! �v [x]� � x[a]� � a[af]� � af[I]� � �x:x[K]� � �xy:x[S]� � �xyz:xz(yz)[MN]� � [M]�[N]�With this translation, some values (such as KK) do not map directly to values in the�v-calculus, but instead map to terms that reduce to values.With constants and delta rules in the two systems, we must have a criteria for de-termining if the two delta rules have the same behavior under the translation functionsgiven above.De�nition 4.5. (Compatible Delta Rules)Two delta rules, �� and �cl, are compatible if1. �v ` ��(af ; V) =M) CLv ` �cl([af]CL; [V]CL) = [M]CL2. CLv ` �cl(af ; V) =M) �v ` ��([af]�; [V]�) = [M]�For all common �� rules, there exist �cl rules that are compatible.Theorem 4.6 �v � CLv if �� and �cl are compatible.Proof sketch. The proof follows the outline of Barendregt's Theorem 7.3.12. Twoportions of the proof are presented here to demonstrate the use of functional extensionality.Since one of the criteria for equivalence is that CLv ` M = [[M]�]CL, we must showthat CLv ` K = [[K]�]CL. [[K]�]CL � [�xy:x]CL� S(KK)ITo show that CLv ` K = S(KK)I we use the functional extensionality rule. To prove theantecedent, we calculate: S(KK)Ix = (KKx)(Ix) = K(Ix) = Kxand so by functional extensionality: K = S(KK)IA slightly more complicated example comes from the � inference rule: For it to holdtrue in CLv, we must show that M = N) �1x:M = �1x:N . This can be proved

by induction on the length of proof of M = N . For example, consider the S axiomSUV W = UW (V W) used as the last step of the proof of M = N . We must showCLv ` �1x:SUV W = �1x:UW (VW)First, �1x:SUV W � S(S(S(KS)�1x:U)�1x:V)�1x:Wand �1x:UW (VW) � S(S(�1x:U)(�1x:W))(S(�1x:V)(�1x:W))Now consider applying both terms to x:S(S(S(KS)�1x:U)�1x:V)(�1x:W)x = SUVW= UW (VW)S(S(�1x:U)(�1x:W))(S(�1x:V)(�1x:W))x = UW (VW)Since they are equal for all x, � 0 applies and the S axiom is closed under �1. 25 Introducing LazinessThe �1 abstraction algorithm does not preserve the structure of terms. Consider theprogram: �x:(�y:y)x. This program is translated into S(KI)I, which, unlike the �-term,contains no redexes. In the by-name �-calculus, this problem was solved by using �� asthe abstraction algorithm. �� di�ers from �1 in one clause:��x:M � KM if x 62 FV (M)That is, �� produces KM where M is the largest possible term with x not occurring free.On the other hand, �1 will only produce KM if M is a constant, variable, or combinator.Using �� as the by-value abstraction algorithm causes some values in the �v-calculus tomap to non-value terms in CLv. This will not work for the by-value case due to therestriction that values must be translated to values: �x:(�y:yy)(�y:yy) is a value in the�v-calculus, but its translation K((SII)(SII)) is not a value in CLv nor does it reduce toone. If the value set is extended so that KM is a value, then the �v-calculus program:(�xy:x)((�y:yy)(�y:yy))is translated to (S(KK)I)((SII)(SII));which, by functional extensionality, is K((SII)(SII))This belongs to the extended set of values even though the �-term does not.The algorithm �� can be modi�ed to work with the �v-calculus by restricting M inthe above clause to a value: ��x:V � KV if x 62 FV (V)

While this is correct, it does not achieve the desired result. Values in CLv contain noredexes, so �� stills splits redexes (as in the �1 algorithm).To avoid splitting redexes, we modify the combinatory logic by replacing the combi-nator K with the syntax (KlM). A Kl term suspends the evaluation of its subexpression.A term (KlM) is a function (and thus a value), and accepts an argument by-value, asusual. To avoid the problem of values not translating to values, the term language isrestricted so that Kl always appears with its one sub-term, i.e., Kl is not a combinator.To emphasize this, we always write Kl terms with explicit parenthesis.Abstracting x from the term (Klx) cannot be S(KlKl)I since this is not a valid expres-sion. To handle this problem the combinator Q is added to de�ne abstraction over Klterms3. This combinatory logic is called CLq.De�nition 5.1. (CLq)Syntactic Domains are the same as for CLv.The syntax is similar to CLv except for the restriction on Kl and the addition of Q.Syntax: F ::= af j I j S j Q j (KlM) j SV j SV V j QVV ::= a j x j FM ::= V jMMAxioms and Inference Rule:IV = V (I)(KlM)V = M (Kl)(QUV) = (Kl(UV)) (Q)SUV W = UW (VW) (S)afV = �cl(af ; V) if �cl(af ; V) is de�ned (�)F1x = F2x) F1 = F2 if x 62 FV (FF 0) (� 0)M = N) (KlM) = (KlN) (�k)Again, the axioms and inference rules of �gure 1 are included. The new abstractionalgorithm, �], is similar to the �1 algorithm except in the details mentioned above, andthe problem that abstraction over Kl terms is not de�ned. Consider a term �]x:(KlM)with x free inM . Performing abstraction as in the �1 algorithm would produce an illegalterm: S(KlKl)(�]x:M). Instead, we need a term that takes an argument, passes it to Kl's�rst sub-term, and then throws away the next argument it receives. This is exactly whatthe Q combinator does.In addition, functional extensionality is incorporated into the algorithm: terms of theform �]x:Fx are replaced with F , since this aids in producing shorter terms.3The Q combinator is not related to that appearing in Smullyan [13].

De�nition 5.2. (�])�] : Vars�CLq ! CLq �]x:x � I�]x:Fx � F if x 62 FV (F)�]x:M � (KlM) if x 62 FV (M)�]x:(KlM) � Q(�]x:M)�]x:(MN) � S(�]x:M)(�]x:N)The translation function from �v to CLq is the same as for �v to CLv, except that �1 isreplaced by �]. Translating terms from CLq to �v proceeds as before except for Kl termsand Q combinators. Q's de�nition is added | it has a simple translation to a �-term.De�nition 5.3. ([�]�)[]� : CLq ! �v [x]� � x[a]� � a[af]� � af[I]� � �x:x[(KlM)]� � �x:[M]�; x 62 FV (M)[Q]� � �xy:�z:xy[S]� � �xyz:xz(yz)[MN]� � [M]�[N]�Now the �v-calculus and CLq are equivalent.Theorem 5.4 �v � CLq if �� and �cl are compatible.The proof is similar to that of Theorem 4.6.The system CLq has several advantages over CLv. Consider the �v-calculus pro-gram �x:succ 2. The translation to CLv produces S(K succ)(K2) while the CLq version is(Kl(succ 2)). Preservation of such redexes permits the use of conventional compiler opti-mizations on the terms, in this case, the redex can be replaced with 3. The CLq programis shorter, requiring a single combinator as opposed to three. Indeed, the translation ofany program to CLq produces a shorter term than the translation to CLv.The CLq translation also has the property that it produces maximally free expressions.Given a �-term �x:M , the maximally free expressions are those subterms of M in whichx does not occur free, and are not contained in any other maximally free expression. Themaximally free expressions are the terms that occur as the �rst argument of a Kl term.Maximally free expressions provide a technique for ensuring fully lazy evaluation.An implementation is fully lazy when a combinator term that does not depend on itsargument is evaluated only once, no matter how many times it is shared through theprogram. For example, given the program SII(Kl(II)), an implementation only needs toevaluate the (II) redex once, even though the �rst reduction step causes it to be duplicated:I(Kl(II))(I(Kl(II))), which in a graph reduction implementation means it will be shared.CLq can be implemented so that evaluation of the two redexes will be shared.

6 ConclusionThe two combinatory logics, CLv and CLq, presented in this paper are interesting forseveral reasons. The simple logic, CLv, may be useful for developing an algebraic modelfor the �v-calculus, as CL was used to create a model of the �-calculus [11]. An openproblem is the construction of a set of axioms, corresponding to A�, for CLv that areequivalent to the inference rule � 0.The logic CLq is useful for creating implementations of by-value languages. Burge [2]rediscovered combinators for computer science. Turner [14] popularized and improvedthe translation using a larger set of combinators so that the resulting CL programs wereshorter. Then Hughes [8] developed supercombinators that made the translation linearin terms of size. Hudak and Goldberg [7] created serial combinators that are used toexecute CL programs on multiprocessors without shared memory. Finally, Kennawayand Sleep [9] developed director strings that allow even more e�cient implementations.Just as CL has been improved in various ways, CLq is the appropriate starting point fora parallel line of research for by-value languages.7 AcknowledgementsWe would like to thank our families for their support. We give sincere thanks to MatthiasFelleisen and Dan Friedman for their guidance and patience with this paper. Also, wewish to thank Mike Fagan, Amr Sabry, and Andrew Wright for their careful proofreading.References[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Studies in Logic andthe Foundations of Mathematics 103. North-Holland, Amsterdam, revised edition,1984.[2] W. Burge. Recursive Programming Techniques. Addison-Wesley, Reading, Mass.,1975.[3] A. Church. The Calculi of Lambda-Conversion. Princeton University Press, Prince-ton, 1941.[4] H. B. Curry. Grundlagen der kombinatorischen Logik. Amer. J. Math, 52:509{536;789{834, 1930.[5] H. B. Curry and R. Feys. Combinatory Logic, volume 1. North Holland, 1958.[6] N. D. Goodman. A simpli�cation of combinatory logic. Journal of Symbolic Logic,37(2), 1972.[7] P. Hudak and B. Goldberg. Serial Combinators: \Optimal" Grains of Parallelism.In Proc of Conf. on Functional Prog. Langs. and Comp. Arch., 1985.

[8] R. Hughes. Super-combinators: A new implementation method for applicative lan-guages. In Sym. on Lisp and Functional Prog., pages 1{10. ACM, Aug 1982.[9] Kennaway, R. and R. Sleep. Director strings as combinators. ACM Trans. Prog.Lang. Syst., 10(4):602{626, 1988.[10] M. Sch�on�nkel. �Uber die Bausteine der Mathematischen Logik. Math. Annalen,92:305{316, 1924.[11] A. Meyer. What is a model of the lambda calculus? Information and Control,52:87{122, 1982.[12] G. Plotkin. Call-by-name, call-by-value, and the �-calculus. Theoretical ComputerScience, 1:125{159, 1975.[13] R. Smullyan. To Mock a Mockingbird and Other Logic Puzzles. Alfred A. Knopf,Inc., New York, 1985.[14] D. A. Turner. A new implementation technique for applicative languages. Software|Practice and Experience, 9:31{49, 1979.

