
ORIGINAL RESEARCH
published: 12 July 2022

doi: 10.3389/fcomp.2022.792570

Frontiers in Computer Science | www.frontiersin.org 1 July 2022 | Volume 4 | Article 792570

Edited by:

Jonni Virtema,

The University of Sheffield,

United Kingdom

Reviewed by:

Marcos Cramer,

Technical University Dresden,

Germany

Harsh Beohar,

The University of Sheffield,

United Kingdom

*Correspondence:

Silvia Ghilezan

gsilvia@uns.ac.rs

Specialty section:

This article was submitted to

Theoretical Computer Science,

a section of the journal

Frontiers in Computer Science

Received: 10 October 2021

Accepted: 17 June 2022

Published: 12 July 2022

Citation:

Ghilezan S and Kašterović S (2022)

Semantics for Combinatory Logic

With Intersection Types.

Front. Comput. Sci. 4:792570.

doi: 10.3389/fcomp.2022.792570

Semantics for Combinatory Logic
With Intersection Types
Silvia Ghilezan 1,2* and Simona Kašterović 1

1 Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia, 2Mathematical Institute of the Serbian Academy of

Sciences and Arts, Belgrade, Serbia

There is a plethora of semantics of computational models, nevertheless, the semantics

of combinatory logic are among the less investigated ones. In this paper, we propose

semantics for the computational system of combinatory logic with intersection types. We

define extensional applicative structures endowed with special elements corresponding

to primitive combinators. We prove two soundness and completeness results. First, the

equational theory of untyped combinatory logic is proven to be sound and complete with

respect to the proposed semantics. Second, the system of the combinatory logic with

intersection types is proven to be sound and complete with respect to the proposed

semantics. The usual approach to the semantics for calculi with types that can be found

in the literature is based on models for the untyped calculus endowed with a valuation

of type variables which enables the interpretation of types to be defined inductively. We

propose, however, a different approach. In the semantics we propose, the interpretation

of types is represented as a family of subsets that satisfies certain properties, whereas

for a given valuation of term variables, the interpretation of terms is defined inductively.

Due to the wide applicability of semantics of computational models, the presented

approach could be further developed to other computational models and beyond—to

current and foreseen application of semantics to large distributed systems and new

challenging technologies.

Keywords: computational systems, combinatory logic, equational theory, type theory, intersection types,

soundness, completeness, semantics

1. INTRODUCTION

In the 1920s twomodels of computation were invented, combinatory logic and lambda calculus. The
foundations of combinatory logic and lambda calculus was established in Curry (1930) and Church
(1936), respectively. They were developed with the aim to describe functions, their behavior and
properties. Nowadays they serve as a basis for the design of functional programming languages and
programming languages at large. These two models of computation have the same computational
power, they can express the same computational concepts; however the syntax of combinatory
logic is much simpler. The basic idea of combinatory logic, introduced in Schönfinkel (1924), is to
build functions without using variables. In order to control function application, type systems were
introduced for both combinatory logic and lambda calculus. A recent comprehensive overview of
combinators is given in Wolfram (2021). Apart from usual application in programming languages,
typed combinatory logic has found its application in a wide range of different fields, such asmachine
learning, artificial intelligence, program synthesis. Developments of these fields urge for further
investigation and development of the theory of combinatory logic.

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.792570
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.792570&domain=pdf&date_stamp=2022-07-12
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gsilvia@uns.ac.rs
https://doi.org/10.3389/fcomp.2022.792570
https://www.frontiersin.org/articles/10.3389/fcomp.2022.792570/full

Ghilezan and Kašterović Semantics for Combinatory Logic

In computation and type theory, intersection types
characterize exactly all strongly normalizing lambda terms
(Coppo and Dezani-Ciancaglini, 1978; Sallé, 1978; Pottinger,
1980) providing, on the computational side, a significant
extension of simple types, which do not type even some normal
forms, such as λx.xx. On the semantical side, intersection types
became a powerful tool suitable for analysing lambda models
(Barendregt et al., 1983, 2013). Intersection types for different
systems have been studied (e.g., van Bakel et al., 2018; de’Liguoro
and Treglia, 2019). Combinatory logic was equipped with
intersection types in Dezani-Ciancaglini and Hindley (1992)
with the same computational advantage of characterizing exactly
all strongly normalizing combinatory terms, i.e., computations
that always terminate.

The main contributions and results of this paper:

• We propose a novel semantics for combinatory logic
with intersection types. We define extensional applicative
structures endowed with special elements corresponding to
primitive combinators S, K and I.

• We prove that the equational theory of untyped combinatory
logic is sound and complete with respect to the proposed
semantics.

• We then prove that combinatory logic with intersection types
is sound and complete with respect to the proposed semantics.

1.1. Background and Motivation
There have been several approaches to semantics of lambda
calculus with intersection types (Barendregt et al., 1983; Dezani-
Ciancaglini and Margaria, 1984; Barbanera et al., 1995; Ong and
Tsukada, 2012; de Carvalho, 2018) nevertheless none of them
addresses combinatory logic. In Barendregt et al. (1983), the
authors have introduced the filter models for lambda calculus and
proved the soundness and completeness of the type assignment
system with respect to the proposed semantics. Further, in
Dezani-Ciancaglini and Margaria (1984) a modification of
intersection type discipline has been considered, and it has
been proved that this type system is sound and complete with
respect to the F-semantics. The type assignment system with
intersection and union types has been introduced in Barbanera
et al. (1995), where authors proposed three semantics for the
introduced system and proved soundness and completeness
results. In de Carvalho (2018), the author introduced a non-
uniform semantics of lambda calculus which allows to measure
execution time and presented the intersection type system
induced by these semantics, which can be seen as a reformulation
of the system of Coppo et al. (1980). In Ong and Tsukada (2012),
the two-level game semantics is used to model intersection types.

On the other hand, semantics for combinatory logic with
intersection types has not been investigated as much as
the semantics for lambda calculus with intersection types.
An overview of models of combinatory logic is given in
Bimbó (2012), however most of these models are models of
untyped combinatory logic. Particularly, one class of models for
combinatory logic with intersection types is presented based on
theories of types which are in 1 − 1 correspondence with filters.
Nevertheless, to the best of our knowledge filter models for

FIGURE 1 | Equational theory EQ.

combinatory logic with intersection types has not been published
anywhere. The lack of study of models of combinatory logic has
been our motivation for the present research.

1.2. Organization of the Paper
In Section 2, we briefly review basic notions of the untyped
combinatory logic and intersection type assignment system for
combinatory logic. We then define the semantics in Section 3.
Section 4 presents the results of the paper: in Section 4.1,
we prove the soundness and completeness of the equational
theory of the untyped combinatory logic with respect to the
proposed semantics; in Section 4.2, we prove the soundness and
completeness of the combinatory logic with intersection types
with respect to the proposed semantics. Section 5 concludes and
contains the discussion of the related work.

2. COMBINATORY LOGIC WITH
INTERSECTION TYPES

We shortly review some basic notions of the untyped
combinatory logic CL (Barendregt, 1985; Hindley and Seldin,
1986; Bimbó, 2012), and intersection types for combinatory logic
(Dezani-Ciancaglini and Hindley, 1992).

2.1. Combinatory Logic
The language of combinatory logic is build up from a countable
set of term variables V and a set of term constants using
application, the only (binary) operation. Terms of combinatory
logic, called CL-terms, are generated by the following grammar:

M,N : : = x | S | K | I | MN

where x is a term variable and S,K, I are term constants, or
constants for short. The set of all CL-terms is denoted by CL
and is ranged over by capital letters M,N, . . . ,M1, The set
of variables that occur in a termM is denoted by FV(M), and the
result of substitution of the termN for variable x in the termM is
denoted byM{N/x}. The use of parentheses is minimized by the
convention that application associates to the left: M1M2 . . .Mn

means [. . . (M1M2) . . .Mn].
The main objects of study in combinatory logic are the

relations between terms. We will consider the equivalence
relation generated by the equational theory EQ given in Figure 1.

If M = N can be derived from the set of axioms and rules
of Figure 1 we say that terms M and N are equal, and we write

Frontiers in Computer Science | www.frontiersin.org 2 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

M = N. The equational theory obtained by adding the rule

Mx = Nx x 6∈ FV(M) ∪ FV(N)
(ext)

M = N

to the equational theory EQ will be denoted by EQη, and it
represents the extensional equational theory. We writeM =η N,
whenever M = N is provable in EQη. We use the notion of
equivalence classes: [M] = {N | M = N is provable in EQη}.

2.2. Intersection Types
Intersection types for combinatory logic were introduced in
Dezani-Ciancaglini and Hindley (1992). The set of intersection
types is generated by the following grammar:

σ , τ : : = a | ω | σ → τ | σ ∩ τ

where a belongs to a countable set of type variables VType and
ω is a type constant. There are two type forming operations: the
arrow,→, which generates the simple types and the intersection,
∩, which provides the extension of the simple types. The set of
all intersection types is denoted by Types and is ranged over
by σ , τ , . . . , σ1, We can omit parentheses in arrow types
by removing outer parentheses and using the convention that,
unless otherwise bracketed, nested arrows associate to the right:
σ1 → . . . → σn−1 → σn means (σ1 → . . . → (σn−1 → σn)).
Intersection types are associative: (σ ∩ τ) ∩ ρ is the same as
σ ∩ (τ ∩ ρ), and an intersection type takes precedence over an
arrow type: σ ∩ τ → ρ means (σ ∩ τ) → ρ.

Definition 2.1 (Dezani-Ciancaglini and Hindley, 1992;
Barendregt et al., 2013).

(i) A statement is of the form M : σ , where M ∈ CL and
σ ∈ Types. The term M is the subject and the type σ is
the predicate of the statement.

(ii) A declaration is a statement with a term variable as subject,
i.e., x : σ .

(iii) A basis (context) is a set of declarations with distinct term
variables as subjects.

(iv) Let Ŵ = {x1 : σ1, . . . , xn : σn} be a basis. The set dom(Ŵ) =
{x1, . . . , xn} is the domain of the basis Ŵ.

(v) Let Ŵ = {x1 : σ1, . . . , xn : σn} be a basis. Then |Ŵ| =

{σ1, . . . , σn}.

The subtyping (pre-order) relation on the set of intersection types
is defined in the following way.

Definition 2.2 (Dezani-Ciancaglini and Hindley, 1992). The
relation ≤ is the smallest binary relation satisfying:

(1) σ ≤ σ ;
(2) σ ≤ σ ∩ σ ;
(3) σ ≤ ω;
(4) σ ∩ τ ≤ σ , σ ∩ τ ≤ τ ;
(5) ω ≤ ω → ω;
(6) (σ → ρ) ∩ (σ → τ) ≤ σ → (ρ ∩ τ);
(7) if σ ≤ τ , τ ≤ ρ then σ ≤ ρ;
(8) if σ ≤ σ1, τ ≤ τ1, then σ ∩ σ1 ≤ τ ∩ τ1;
(9) if σ ≤ σ1, τ ≤ τ1, then σ1 → τ ≤ σ → τ1,

The induced equivalence relation∼ is defined by

σ ∼ τ if and only if σ ≤ τ and τ ≤ σ .

The type-assignment system for combinatory logic with
intersection types, denoted by CL∩, is presented in Figure 2.
If the typing judgment Ŵ ⊢ M : σ can be derived by the rules
in Figure 2, then it means that the statement M : σ is derivable
from the basis Ŵ and that the termM is typable in the given basis
Ŵ with type σ .

The rules (axiom S), (axiom K), and (axiom I) type the
combinators S, K, and I, respectively. The rule (axiom ω) enables
every combinatory term M to be typable. The rules (→ elim),
(∩ elim-l), and (∩ elim-r) are the usual elimination rules for →
and ∩, respectively. The rule (∩ intro) is the introduction rule
for ∩. The rule (sub-type) is the subsumption rule induced by the
subtyping relation on types and the rule (eq) is the rule which
enables type preservation under equality.

Remark 2.3. The type-assignment system TACLB1 of Dezani-
Ciancaglini and Hindley (1992) is obtained from CL∩ by
omitting the rule (eq). Type-assignment statements inTACLB1 are
preserved by the equality generated by the equational theory EQ
(Dezani-Ciancaglini and Hindley, 1992, Theorem 3.12). In order
to obtain a type-assignment system in which types are preserved
by the equality generated by the extensional equational theory
EQη, the rule (eq) has to be added.

Lemma 2.4 (Weakening lemma). If Ŵ ⊢ M : σ and Ŵ ⊆ Ŵ′ then
Ŵ′ ⊢ M : σ .

Proof: By induction on the length of derivation of Ŵ ⊢

M : σ .

3. SEMANTICS FOR CL∩

In this section, we introduce a semantics for combinatory logic
with intersection types. We define a model for CL∩ as an
applicative structure equipped with an environment.

Definition 3.1. An applicative structure for CL∩ is a tuple

M = 〈D, {Aσ },App〉

which consists of:

(i) a non-empty set D, called domain,
(ii) a family {Aσ } of sets indexed by types σ , such that for every

σ , τ ∈ Types,

• Aσ ⊆ D,
• Aω = D,
• Aσ∩τ = Aσ ∩ Aτ ,
• if σ ≤ τ , then Aσ ⊆ Aτ .

(iii) an application function App :D × D → D, such that for
every σ , τ ∈ Types,
App ↾ (Aσ→τ × Aσ) :Aσ→τ × Aσ → Aτ .

Definition 3.2. An applicative structure

M = 〈D, {Aσ },App〉

Frontiers in Computer Science | www.frontiersin.org 3 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

FIGURE 2 | Type-assignment system CL∩.

has combinators if there exist elements s, k, i of the domain D
such that

• s ∈ A(σ→(ρ→τ))→((σ→ρ)→(σ→τ)) for every σ , ρ, τ ∈ Types,
• k ∈ Aσ→(τ→σ) for every σ , τ ∈ Types,
• i ∈ Aσ→σ for every σ ∈ Types,
• for every a, b, c ∈ D the following equations hold:

App(App(App(s, a), b), c) = App(App(a, c),App(b, c)) (1)

App(App(k, a), b) = a (2)

App(i, a) = a (3)

Definition 3.3. An applicative structure

M = 〈D, {Aσ },App〉

is extensional if for all f , g ∈ D it holds that

if (∀a ∈ D)(App(f , a) = App(g, a)), then f = g.

Definition 3.4. An environment ρ for an applicative structure
M is a mapping from a set of term variables to the domain,
ρ :V → D.

Although the proposed semantics is not Kripke-style
semantics, its definition is inspired by the Kripke-style semantics
introduced in Mitchell and Moggi (1991) and Kašterović and
Ghilezan (2020), where a model is also defined as an applicative
structure provided with an environment. The important
difference between Definition 3.4 and the definition of an
environment in Kašterović and Ghilezan (2020) is the fact that
the environment in Kašterović and Ghilezan (2020) was a partial
mapping, whereas herein it is a total mapping. The motivation
for defining environments as total mappings will be explained in
Remark 4.5.

Let ρ be an environment for M and a ∈ D. By ρ(x : = a) we
denote the environment forM such that for all y ∈ V

ρ(x : = a)(y) =

{

a, y = x

ρ(y), y 6= x

Definition 3.5. A model for CL∩ is a pairMρ = 〈M, ρ〉, where
M = 〈D, {Aσ },App〉 is an extensional applicative structure for
CL∩ with combinators, and ρ is an environment forM.

Definition 3.6. Let Mρ be a model for CL∩. We define the
meaning of a term M in the environment ρ, denoted by [[M]]ρ ,
inductively as follows:

1. [[x]]ρ = ρ(x),
2. [[S]]ρ = s,
3. [[K]]ρ = k,
4. [[I]]ρ = i,
5. [[MN]]ρ = App([[M]]ρ , [[N]]ρ).

Note that the meaning of a term does not depend on the
meaning of the variables that do not occur in the term. Since an
environment ρ is a total mapping and ρ(x) is defined for every
variable x, the meaning of every term M, denoted by [[M]]ρ , is
also well-defined.

Remark 3.7. An important difference between the applicative
structure we define and the one introduced inMitchell andMoggi
(1991) is that we have a domain in the applicative structure. In
Mitchell and Moggi (1991) the authors define the interpretation
of the judgment Ŵ ⊢ M : σ , they interpret the term with its type.
In turn, we wanted to be able to define the interpretation of a
term independent of its type. For this reason we have introduced
a domain as part of the applicative structure.

Lemma 3.8. Let M be an extensional applicative structure for
CL∩ with combinators, ρ1 and ρ2 environments for M and M a
CL-term. If ρ1(x) = ρ2(x) holds for every variable x ∈ FV(M),
then [[M]]ρ1 = [[M]]ρ2 .

Frontiers in Computer Science | www.frontiersin.org 4 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

Proof: We prove the statement by induction on the structure of
the termM.

• LetM be a variable x. If ρ1(x) = ρ2(x), then [[x]]ρ1 = ρ1(x) =
ρ2(x) = [[x]]ρ2 .

• IfM is a term constant, then its interpretation does not depend
on the environment, but only on the applicative structure. For
example, letM be a term constantS, then [[S]]ρ1 = s = [[S]]ρ2 .

• If M is an application NL, then by the induction hypothesis
the statement holds for terms N and L, [[N]]ρ1 = [[N]]ρ2 and
[[L]]ρ1 = [[L]]ρ2 . Now, by Definition 3.6 we have

[[M]]ρ1 = [[NL]]ρ1 = App([[N]]ρ1 , [[L]]ρ1) = App([[N]]ρ2 , [[L]]ρ2)

= [[NL]]ρ2 = [[M]]ρ2 .

Lemma 3.9 (Substitution lemma). Let M,N be CL-terms and ρ

an environment for an applicative structureM. Then,

[[M{N/x}]]ρ = [[M]]ρ(x :=[[N]]ρ).

The satisfiability of a statement M : σ in a model and the notion
of semantical consequence are defined as follows.

Definition 3.10 (Kašterović and Ghilezan, 2020).

1. A statement M : σ is satisfied in a model Mρ , denoted by
Mρ |H M : σ , if and only if [[M]]ρ ∈ Aσ . In this case we say
Mρ is a model of the statementM : σ . If a modelMρ does not
satisfy the statementM : σ , we writeMρ 6|H M : σ .

2. A modelMρ is a model of a basis Ŵ, denoted byMρ |H Ŵ, if
and only if every declaration x : σ from the basis Ŵ is satisfied
in the modelMρ , namelyMρ |H x : σ .

3. A statement M : σ is a semantical consequence of a basis Ŵ,
denoted by Ŵ |H M : σ , if and only if every model of the basis
Ŵ is also a model of the statementM : σ .

4. SOUNDNESS AND COMPLETENESS
RESULTS

In this section we present the main results of the paper. We
prove in Section 4.1 that the equational theory of the untyped
combinatory logic EQη is sound and complete with respect to
the proposed semantics. In Section 4.2, we prove that the type-
assignment system CL∩ is sound and complete with respect to
the proposed semantics.

4.1. Soundness and Completeness of
Equational Theory EQη

In the previous section we have introduced models for CL∩
such that the interpretation of every term is defined in a model.
A fundamental question to ask is: if two terms are proven
to be equal in the equational theory are their interpretations
equal in a model?—this is referred to as the soundness of the
equational theory with respect to the model. The other direction:
if interpretations of two terms are equal in every model are the

terms proven to be equal in the equational theory?—is referred to
as the completeness.

In the sequel, we prove that the equational theory of untyped
combinatory logic EQη is sound and complete with respect to the
proposed semantics.

Theorem 4.1 (Soundness of EQη). If M =η N, then [[M]]ρ =

[[N]]ρ for every modelMρ .

Proof: The proof is by induction on the length of the proof of
M = N in EQη.

If M = N is an instance of axiom (id), then terms M and N
represent the same term L and it holds that [[M]]ρ = [[L]]ρ =

[[N]]ρ for every modelMρ .
If M = N is obtained by axiom (S), then there exist terms P, Q
and R such that terms M and N are terms SPQR and (PR)(QR),
respectively. Then, from Definitions 3.2 and 3.6 we obtain

[[SPQR]]ρ = App(App(App([[S]]ρ , [[P]]ρ), [[Q]]ρ), [[R]]ρ)

= App(App(App(s, [[P]]ρ), [[Q]]ρ), [[R]]ρ)

= App(App([[P]]ρ , [[R]]ρ),App([[Q]]ρ , [[R]]ρ))

= [[(PR)(QR)]]ρ .

IfM = N is obtained by axiom (K), then there exist terms P and
Q, such that terms M and N are terms KPQ and P, respectively.
Then, from Definitions 3.2 and 3.6 we obtain

[[KPQ]]ρ = App(App([[K]]ρ , [[P]]ρ), [[Q]]ρ)

= App(App(k, [[P]]ρ), [[Q]]ρ)

= [[P]]ρ .

If M = N falls under axiom (I), then terms M and N are of the
form IP and P, respectively, for some term P. In a similar way as
in the previous two cases, we obtain

[[IP]]ρ = App([[I]]ρ , [[P]]ρ) = App(i, [[P]]ρ) = [[P]]ρ .

If M = N is obtained from N = M by rule (sym), then by
induction hypothesis [[N]]ρ = [[M]]ρ and the statement holds.

If M = N is obtained from M = L and L = N by rule
(trans), then [[M]]ρ = [[L]]ρ and [[L]]ρ = [[N]]ρ hold by induction
hypothesis. Thus, [[M]]ρ = [[N]]ρ also holds.

Next, let us suppose that M = N is obtained from L = Q
by rule (app-l), then terms M and N are of the form LP and QP,
respectively, for some term P. By induction hypothesis [[L]]ρ =

[[Q]]ρ . From the latter we obtain

[[LP]]ρ = App([[L]]ρ , [[P]]ρ) = App([[Q]]ρ , [[P]]ρ) = [[QP]]ρ .

Similarly to the previous case, ifM = N is obtained by rule (app-
r), then terms M and N are of the form PL and PQ, respectively,
for some terms P, L,Q such that L = Q is provable in EQη. By
induction hypothesis we obtain [[L]]ρ = [[Q]]ρ , and thus

[[PL]]ρ = App([[P]]ρ , [[L]]ρ) = App([[P]]ρ , [[Q]]ρ) = [[PQ]]ρ .

Finally, we consider the case where M = N is obtained by
applying rule (ext) to Mx = Nx, with x being a variable

Frontiers in Computer Science | www.frontiersin.org 5 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

which appears neither in M nor in N. Let Mρ be a model
for CL∩. In order to prove that [[M]]ρ = [[N]]ρ holds, it
is enough to prove that for every d ∈ D it holds that
App([[M]]ρ , d) = App([[N]]ρ , d), because of the extensionality
of the applicative structure M. Let d ∈ D. Since by induction
hypothesis [[Mx]]ρ = [[Nx]]ρ holds in any model, it also holds
in model Mρ(x :=d), that is App([[M]]ρ(x :=d), [[x]]ρ(x :=d)) =

App([[N]]ρ(x :=d), [[x]]ρ(x :=d)). From the assumption that x does
not appear inM and Lemma 3.8, we obtain [[M]]ρ = [[M]]ρ(x :=d).
Similarly, [[N]]ρ = [[N]]ρ(x :=d). Now, we have

App([[M]]ρ , d) = App([[M]]ρ(x :=d), d)

= App([[M]]ρ(x :=d), [[x]]ρ(x :=d))

= [[Mx]]ρ(x :=d)

= [[Nx]]ρ(x :=d)

= App([[N]]ρ(x :=d), [[x]]ρ(x :=d))

= App([[N]]ρ , d).

Thus, [[M]]ρ = [[N]]ρ due to the extensionality of the
applicative structure.

This concludes the proof.

Recall that by [M] we denote the equivalence class of term
M with respect to the equivalence relation generated by the
equational theory EQη, [M] = {N | M = N is provable in EQη}.

In order to prove the completeness, we first prove the
following property.

Lemma 4.2. Let M = 〈D, {Aσ },App〉 be an extensional
applicative structure with combinators, such that D = {[M] | M ∈

CL}, App([M], [N]) = [MN], s = [S], k = [K] and i = [I]. If an
environment ρ⋆ is defined by ρ⋆(x) = [x], then [[M]]ρ⋆ = [M].

Proof: The proof is by induction on the structure ofM.

• If the term M is a variable x, then by Definition 3.6 we have
[[x]]ρ⋆ = ρ⋆(x) = [x].

• If the term M is a term constant, for example S, then by
Definition 3.6 we have [[S]]ρ⋆ = s = [S]. Similarly, for term
constants K and I.

• If the term M is an application NL, then by the induction
hypothesis the statement holds for terms N and L, [[N]]ρ⋆ =

[N] and [[L]]ρ⋆ = [L]. Further, by Definition 3.6 we obtain
[[NL]]ρ⋆ = App([[N]]ρ⋆ , [[L]]ρ⋆) = App([N], [L]) = [NL].

Theorem 4.3 (Completeness of EQη). If [[M]]ρ = [[N]]ρ holds
in every modelMρ , then M =η N.

Proof: Suppose that [[M]]ρ = [[N]]ρ holds for any model Mρ .
We define a modelM′

ρ⋆ = 〈M0, ρ⋆〉 whereM0 is an applicative
structure 〈D, {Aσ },App〉 with the following components:

• the domain D is defined by D = {[M] | M ∈ CL};
• for every σ ∈ Types, Aσ = {[M] | M ∈ CL and ⊢ M : σ };
• App is a function defined by App([M], [N]) = [MN].

The environment ρ⋆ is defined by ρ⋆(x) = [x].
First we prove that the structure M0 is an applicative

structure, meaning that it satisfies conditions of Definition 3.1.
The set D is a non-empty set. For every σ ∈ Types, the set
Aσ = {[M] | M ∈ CL and ⊢ M : σ } is a subset of the set
D = {[M] | M ∈ CL}. Since for every term M it holds that
⊢ M :ω, we have that Aω = {[M] | M ∈ CL and ⊢ M :ω} =

{[M] | M ∈ CL} = D. Next, we look at the sets Aσ and Aτ . By the
definition of the applicative structure M0 we have Aσ = {[M] |
M ∈ CL and ⊢ M : σ } and Aτ = {[M] | M ∈ CL and ⊢ M : τ }.
If [M] ∈ Aσ ∩ Aτ , then ⊢ M : σ and ⊢ M : τ . By rule (∩
intro) of Figure 2 we obtain ⊢ M : σ ∩ τ , which is equivalent to
[M] ∈ Aσ∩τ , and we conclude Aσ ∩ Aτ ⊆ Aσ∩τ . Similarly, we
prove thatAσ∩τ ⊆ Aσ∩Aτ andwe concludeAσ∩τ = Aσ∩Aτ . Let
σ , τ ∈ Types such that σ ≤ τ . If [M] ∈ Aσ , then ⊢ M : σ holds,
and since σ ≤ τ we obtain ⊢ M : τ by rule (sub-type). It follows
that [M] ∈ Aτ and we can conclude that σ ≤ τ impliesAσ ⊆ Aτ .
The functionApp defined byApp([M], [N]) = [MN] mapsD×D
to D. If [M] ∈ Aσ→τ and [N] ∈ Aσ , then by the definition of the
applicative structure M0 we have ⊢ M : σ → τ and ⊢ N : σ . By
rule (→ elim) of Figure 2 we obtain ⊢ MN : τ , thus we conclude
[MN] ∈ Aτ and App ↾ (Aσ→τ × Aσ) :Aσ→τ × Aσ → Aτ .

Next, we prove that the applicative structure M0 has
combinators. We consider the equivalence classes [S], [K], [I] ∈
D and denote them by s, k, i, respectively. Since ⊢ S :(σ → (τ →

ρ)) → ((σ → τ) → (σ → ρ)) holds by (axiom S) of Figure 2,
we have that s = [S] ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)) for any
σ , τ , ρ ∈ Types. Similarly, we obtain k = [K] ∈ Aσ→(τ→σ) and
i = [I] ∈ Aσ→σ . We also have to prove that the elements s, k,
and i satisfy the Equations (1)–(3). By the rules of the equational
theory EQη we obtain [SMNL] = [(ML)(NL)], [KMN] = [M]
and [IM] = [M] and it follows that:

App(App(App([S], [M]), [N]), [L]) = [SMNL] = [(ML)(NL)]

= App([ML], [NL])

= App(App([M], [L]),App([N], [L]))

App(App([K], [M]), [N]) = [KMN] = [M]

App([I], [M]) = [IM] = [M]

The extensionality of the applicative structure follows from the
extensionality of combinatory logic. Let [M], [N] ∈ D such that
for every [L] ∈ D, App([M], [L]) = App([N], [L]), i.e., [ML] =

[NL]. Then, for a variable x, that does not appear in termsM and
N, it holds that [Mx] = [Nx], that isMx = Nx is provable in EQη.
By rule (ext) we obtainM = N is provable in EQη, so [M] = [N].

We have proved that M′
ρ⋆ is a model for CL∩. If [[M]]ρ =

[[N]]ρ in any model, then it also holds in the modelM′
ρ⋆ . Hence,

we have that [[M]]ρ⋆ = [[N]]ρ⋆ . From Lemma 4.2 we get [[M]]ρ⋆ =

[M] and [[N]]ρ⋆ = [N]. Now we can conclude that [M] = [N]
holds, that isM =η N.

Frontiers in Computer Science | www.frontiersin.org 6 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

Theorems 4.1 and 4.3 prove that the equational theory of
untyped combinatory logic is both sound and complete with
respect to the proposed semantics, hence the proposed semantics
is a semantics of the untyped combinatory logic.

4.2. Soundness and Completeness of
Type-Assignment System CL∩

In the sequel we consider another fundamental question: ifM : σ

is (syntactically) derivable in the type system CL∩, ⊢ M : σ , is it
valid in all models, |H M : σ ?—this is referred to as the soundness
of the type-assignment system with respect to the model. More
general, if Ŵ ⊢ M : σ is (syntactically) derivable in the type
system CL∩, is it semantically derivable, Ŵ |H M : σ ? The other
direction: if M : σ is valid in all models of CL∩, is it derivable
in CL∩?—is referred to as the completeness. More general, does
semantical derivability Ŵ |H M : σ imply syntactical derivability
Ŵ ⊢ M : σ ?

We prove herein the type-assignment system CL∩ to be sound
and complete with respect to the proposed semantics.

Theorem 4.4 (Soundness ofCL∩). IfŴ ⊢ M : σ , thenŴ |H M : σ .

Proof: We prove the statement by induction on the derivation of
Ŵ ⊢ M : σ , considering the last rule used.

• Let
x : σ ∈ Ŵ

Ŵ ⊢ x : σ
be the last rule used. Assume that Mρ is

a model, such that Mρ |H Ŵ. By Definition 3.10, the latter
implies that for every y : τ ∈ Ŵ,Mρ |H y : τ . From the premise
we have x : σ ∈ Ŵ, thusMρ |H x : σ .

• If Ŵ ⊢ M : σ falls under (axiom S), then we have Ŵ ⊢

S :(σ1 → (ρ1 → τ1)) → ((σ1 → ρ1) → (σ1 →

τ1)) for some σ1, τ1, ρ1 ∈ Types. Let Mρ be an arbitrary
model for CL∩. By Definition 3.6 we have that [[S]]ρ = s ∈

A(σ1→(ρ1→τ1))→((σ1→ρ1)→(σ1→τ1)). Thus, Mρ |H S :(σ1 →

(ρ1 → τ1)) → ((σ1 → ρ1) → (σ1 → τ1)) and we can
conclude Ŵ |H S :(σ1 → (ρ1 → τ1)) → ((σ1 → ρ1) →

(σ1 → τ1)).
• IfŴ ⊢ M : σ falls under (axiom K), then we haveŴ ⊢ K : σ1 →

(τ1 → σ1) for some σ1, τ1 ∈ Types. Let Mρ be an arbitrary

model for CL∩. We have that [[K]]ρ = k ∈ Aσ1→(τ1→σ1). Thus,
Mρ |H K : σ1 → (τ1 → σ1) holds and we can conclude
Ŵ |H K : σ1 → (τ1 → σ1).

• If Ŵ ⊢ M : σ falls under (axiom I), then we have Ŵ ⊢ I : σ1 →

σ1 for some σ1 ∈ Types. For an arbitrary model Mρ it holds
that [[I]]ρ = i ∈ Aσ1→σ1 . Hence, Mρ |H I : σ1 → σ1 and
Ŵ |H I : σ1 → σ1.

• If Ŵ ⊢ M : σ falls under (axiom ω), then we have Ŵ ⊢ M :ω.
LetMρ be an arbitrary model for CL∩. We have that [[M]]ρ ∈

D and Aω = D. From this we obtain [[M]]ρ ∈ Aω , that is
Mρ |H M :ω.

• Let
Ŵ ⊢ M : σ → τ Ŵ ⊢ N : σ

Ŵ ⊢ MN : τ
be the last rule used

and Mρ a model which satisfies Ŵ. By the induction
hypothesis, we have that the statement holds for premises
Ŵ ⊢ M : σ → τ and Ŵ ⊢ N : σ , i.e., Ŵ |H M : σ → τ and
Ŵ |H N : σ . From the induction hypothesis and the assumption
Mρ |H Ŵ, we obtainMρ |H M : σ → τ andMρ |H N : σ . The

former implies [[M]]ρ ∈ Aσ→τ and the latter implies [[N]]ρ ∈

Aσ . Thus, it holds that [[MN]]ρ = App([[M]]ρ , [[N]]ρ) ∈ Aτ ,
and we obtainMρ |H MN : τ .

• Let
Ŵ ⊢ M : σ ∩ τ

Ŵ ⊢ M : σ
be the last rule used and Mρ a model

of Ŵ. By the induction hypothesis we have Mρ |H M : σ ∩ τ ,
which implies that [[M]]ρ ∈ Aσ∩τ holds. Since Aσ∩τ = Aσ ∩

Aτ by Definition 3.1, we have [[M]]ρ ∈ Aσ ∩ Aτ ⊆ Aσ . Thus,
we concludeMρ |H M : σ .

• If the last rule used is
Ŵ ⊢ M : σ ∩ τ

Ŵ ⊢ M : τ
the proof proceeds

similarly as in the previous case.

• Let
Ŵ ⊢ M : σ Ŵ ⊢ M : τ

Ŵ ⊢ M : σ ∩ τ
be the last rule used andMρ

a model of Ŵ. By the induction hypothesis we obtain Mρ |H

M : σ and Mρ |H M : τ . The former implies that [[M]]ρ ∈ Aσ

holds, and the latter implies that [[M]]ρ ∈ Aτ holds. Since
Aσ∩Aτ = Aσ∩τ byDefinition 3.1, we have [[M]]ρ ∈ Aσ∩Aτ =

Aσ∩τ . Finally, we concludeMρ |H M : σ ∩ τ .

• Let
Ŵ ⊢ M : σ σ ≤ τ

Ŵ ⊢ M : τ
be the last rule used and Mρ a

model which satisfies the basis Ŵ. By the induction hypothesis
we obtain that the statement holds for the premise, i.e., Ŵ |H

M : σ and since Mρ |H Ŵ we have that Mρ |H M : σ . The
latter implies [[M]]ρ ∈ Aσ . By Definition 3.1 we know that
σ ≤ τ implies Aσ ⊆ Aτ . Hence, it holds that [[M]]ρ ∈ Aτ , and
we can concludeMρ |H M : τ .

• Let
Ŵ ⊢ M : σ M =η N

Ŵ ⊢ N : σ
be the last rule used andMρ a

model ofŴ. By the induction hypothesis we haveMρ |H M : σ ,
which implies that [[M]]ρ ∈ Aσ holds. From M =η N, that
is M = N is provable in EQη, and Theorem 4.1 we obtain
[[M]]ρ = [[N]]ρ . Thus, we can conclude [[N]]ρ = [[M]]ρ ∈ Aσ ,
that isMρ |H N : σ .

This concludes the proof.

Remark 4.5. As pointed out in Section 3, we have defined
an environment as a total mapping, whereas in Kašterović
and Ghilezan (2020) an environment was defined as a partial
mapping. Every combinatory term is typable with the type ω, i.e.,
Ŵ ⊢ M :ω for any basis Ŵ, and in order to obtain the soundness
of the type-assignment system we need to prove thatM :ω holds
in every model. Thus, we had to define environments so that the
meaning of every termM is defined in all models. This is specific
to intersection type systems and is due to the rule (axiom ω)
which ensures typability of all terms.

We define a class of canonical models, following the approach
used in Kašterović and Ghilezan (2020), in order to prove the
completeness of the type-assignment system CL∩ with respect
to the models presented in Section 3. Each canonical model
is defined with respect to some basis, so that it satisfies only
statements that can be derived from that basis. More precisely,
we will define a modelMŴ

ρ⋆ such that

M
Ŵ
ρ⋆ |H M : σ if and only if Ŵ ⊢ M : σ .

Frontiers in Computer Science | www.frontiersin.org 7 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

Definition 4.6. Let Ŵ be a basis. A canonical model is a pair
MŴ

ρ⋆ = 〈MŴ , ρ⋆〉, where

M
Ŵ = 〈D, {Aσ },App〉

such that

• D = {[M] | M ∈ CL},
• Aσ = {[M] | M ∈ CL and Ŵ ⊢ M : σ },
• App([M], [N]) = [MN],

and ρ⋆(x) = [x].

Lemma 4.7. The canonical modelMŴ
ρ⋆ is a model for CL∩.

Proof: We need to prove that the tuple MŴ
ρ⋆ introduced in

Definition 4.6 satisfies the conditions of Definition 3.5. First, we
prove that MŴ = 〈D, {Aσ },App〉 is an applicative structure. The
set D is a non-empty set. The set Aσ = {[M] | M ∈ CL and Ŵ ⊢

M : σ } is a subset of D = {[M] | M ∈ CL}. For every CL-term
M we have Ŵ ⊢ M :ω, thus Aω = {[M] | M ∈ CL and Ŵ ⊢

M :ω} = {[M] | M ∈ CL} = D. The proofs that the family
{Aσ } and the application function App satisfy the conditions
of Definition 3.1 are obtained similarly as in the proof of
Theorem 4.3.

We have proved that the tuple MŴ = 〈D, {Aσ },App〉 is an
applicative structure. Next, we prove that it has combinators and
that it is extensional. Similarly as in the proof of Theorem 4.3
we denote equivalence classes [S], [K], [I] by s, k, i, respectively.
From the type-assignment system (Figure 2) we know that for
the basis Ŵ, Ŵ ⊢ S :(σ → (τ → ρ)) → ((σ → τ) →

(σ → ρ)). From the latter it follows that s = [S] ∈

A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)). Similarly, we obtain k = [K] ∈

Aσ→(τ→σ) and i = [I] ∈ Aσ→σ . The proof that elements
[S], [K], [I] satisfy Equations (1)–(3) is given in the proof of
Theorem 4.3.

We have proved that the applicative structure introduced in
Definition 4.6 has combinators. The proof that the applicative
structure is extensional is the same as in the proof of Theorem 4.3.

The mapping ρ⋆ defined by ρ⋆(x) = [x] is an environment for
the applicative structureMŴ .

This completes the proof thatMŴ
ρ⋆ is a model for CL∩.

Lemma 4.8. LetMŴ
ρ⋆ be the canonical model. For every CL-term

M, it holds [[M]]ρ⋆ = [M].

Proof: This is a straightforward consequence of Lemma 4.2.

Theorem 4.9. LetMŴ
ρ⋆ be a canonical model. It holds that

M
Ŵ
ρ⋆ |H M : σ if and only if Ŵ ⊢ M : σ .

Proof: By Definition 4.6 and Lemma 4.8 we obtain

M
Ŵ
ρ⋆ |H M : σ if and only if [[M]]ρ⋆ ∈ Aσ

if and only if [M] ∈ {[N] | N ∈ CL and Ŵ ⊢ N : σ }

if and only if Ŵ ⊢ M : σ .

Theorem 4.10 (Completeness of CL∩). If Ŵ |H M : σ , then
Ŵ ⊢ M : σ .

Proof: Suppose that Ŵ |H M : σ . Let MŴ
ρ⋆ be a canonical model

(Definition 4.6). First, we need to prove that MŴ
ρ⋆ |H Ŵ. Let

x : σ be a declaration from the basis Ŵ. By Lemma 4.8 and
Definition 4.6 we have

[[x]]ρ⋆ = [x] ∈ {[N] | N ∈ CL and Ŵ ⊢ N : σ } = Aσ

It follows that MŴ
ρ⋆ |H Ŵ. From the latter and the assumption

Ŵ |H M : σ we obtain MŴ
ρ⋆ |H M : σ . By Theorem 4.9 we obtain

Ŵ ⊢ M : σ .

Theorems 4.4 and 4.10 prove that the type-assignment
system CL∩ is both sound and complete with respect to
the proposed semantics. Hence the proposed semantics
is a semantics of the combinatory logic with intersection
types and of the untyped combinatory logic, as proven in
Section 4.1.

5. DISCUSSION AND CONCLUSION

Combinatory logic, both typed and untyped, found its
application in different scientific fields of computer science,
e.g., machine learning (Liang et al., 2010) and artificial
intelligence (e.g., Garrette et al., 2015), cognitive representation
(e.g., Pierre Desclés, 2004), program synthesis (e.g., Düdder
et al., 2012). The development of these fields urge for the
further development of combinatory logic, typed, and untyped.
Combinatory logic with intersection types has been the object
of several studies (Dezani-Ciancaglini and Hindley, 1992;
Bunder, 2002; Rehof and Urzyczyn, 2011; Bimbó, 2012).
In Dezani-Ciancaglini and Hindley (1992), two different
formulations of intersection types for combinatory logic
are proposed and we consider in the paper one of these
formulations. The authors proved that type-assignment
statements are preserved by combinatory β-equality. A logic
of intersection types is considered in Venneri (1994), by
studying a logical characterization for the intersection-type
discipline. The author presents a new formulation of the
intersection type inference, equivalent to the original one,
and then define a Hilbert-style axiomatization such that a
formula is provable in the logical system if and only if it is
an inhabited intersection type. Bunder (2002) also studies a
logic of intersection types for lambda-terms and combinators
by introducing a new system for intersection types, weaker
than the one of Venneri (1994), and with the advantage
that the logic of types can be obtained directly from the
rules of the type-assignment system. None of these papers
consider semantics for combinatory logic with intersection
types. Models for combinatory logic with intersection types
are presented in Bimbó (2012) along with the proof that the
type-assignment system is sound and complete with respect
to the presented models. Kripke-style semantics for lambda
calculus and combinatory logic with types are introduced
in Mitchell and Moggi (1991) and Kašterović and Ghilezan

Frontiers in Computer Science | www.frontiersin.org 8 July 2022 | Volume 4 | Article 792570

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

(2020). In Mitchell and Moggi (1991), calculi with simple types
are considered, whereas in Kašterović and Ghilezan (2020)
the authors considered full simply typed calculi. However,
to the best of our knowledge the semantics we propose
is novel.

We have introduced a semantics for combinatory logic
with intersection types. As the main results of the paper
we have proved that both the extensional equational theory
of the untyped CL and the intersection type-assignment
system CL∩ are sound and complete with respect to the
proposed semantics.

The usual approach to the semantics for calculi with
types that can be found in the literature, e.g., filter models
for lambda calculus with intersection types (Barendregt
et al., 1983), is based on a model for the untyped calculus
endowed with a valuation of type variables which enables
the interpretation of types to be defined inductively. We
propose a different approach. In the semantics we propose,
the interpretation of types is represented as a family of subsets
that satisfies certain properties. Moreover, for a given valuation
of term variables, the interpretation of terms is defined
inductively, whereas in the previously mentioned semantics
the interpretation of terms is defined as a function that satisfies
specified conditions.

We plan to further develop this approach to lambda
calculus, to different frameworks in logic and computation, e.g.,
polymorphic types.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary materials, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

Both authors listed have made a substantial, direct, and
intellectual contribution to the work and approved it
for publication.

FUNDING

This research reported in the paper is partly supported by the
Science Fund Republic of Serbia #6526707 AI4TrustBC.

ACKNOWLEDGMENTS

The authors would like to thank the referees whose suggestions
lead to major improvements.

REFERENCES

Barbanera, F., Dezani-Ciancaglini, M., and de’Liguoro, U. (1995). Intersection
and union types: syntax and semantics. Inf. Comput. 119, 202–230.
doi: 10.1006/inco.1995.1086

Barendregt, H. P. (1985). The Lambda Calculus - Its Syntax and Semantics,

Volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier:
North-Holland.

Barendregt, H. P., Coppo, M., and Dezani-Ciancaglini, M. (1983). A filter lambda
model and the completeness of type assignment. J. Symb. Logic. 48, 931–940.
doi: 10.2307/2273659

Barendregt, H. P., Dekkers, W., and Statman, R. (2013). Lambda Calculus

With Types. Perspectives in Logic. Cambridge: University Press.
doi: 10.1017/CBO9781139032636

Bimbó, K. (2012). Combinatory Logic: Pure, Applied, and Typed. Boca
Raton, FL: CRC Press; Taylor & Francis Group. doi: 10.1201/
b11046

Bunder, M. W. (2002). Intersection types for lambda-terms and combinators
and their logics. Log. J. IGPL 10, 357–378. doi: 10.1093/jigpal/
10.4.357

Church, A. (1936). An unsolvable problem of elementary number theory. Am. J.

Math. 58, 345–363. doi: 10.2307/2371045
Coppo, M., and Dezani-Ciancaglini, M. (1978). A new type assignment for λ-

terms. Arch. Math. Log. 19, 139–156. doi: 10.1007/BF02011875
Coppo, M., Dezani-Ciancaglini, M., and Venneri, B. (1980). “Principal type

schemes and lambda-calculus semantics,” inH.B.Curry: Essays on Combinatory

Logic, Lambda-Calculus and Formalism (San Diego, CA: Academic Press),
535–560.

Curry, H. B. (1930). Grundlagen der kombinatorischen logik. Am. J. Math. 52,
509–536. doi: 10.2307/2370619

de Carvalho, D. (2018). Execution time of λ-terms via denotational semantics
and intersection types. Math. Struct. Comput. Sci. 28, 1169–1203.
doi: 10.1017/S0960129516000396

de’Liguoro, U., and Treglia, R. (2019). “Intersection types for the computational
lambda-calculus,” in Proceedings of the 20th Italian Conference on Theoretical

Computer Science, ICTCS 2019, eds A. Cherubini, N. Sabadini, and S. Tini
(Como), 184–189.

Dezani-Ciancaglini, M., and Hindley, J. R. (1992). Intersection
types for combinatory logic. Theor. Comput. Sci. 100, 303–324.
doi: 10.1016/0304-3975(92)90306-Z

Dezani-Ciancaglini, M., and Margaria, I. (1984). “F-semantics for intersection
type discipline,” in Semantics of Data Types, International Symposium Sophia-

Antipolis, Vol. 173 of Lecture Notes in Computer Science, eds G. Kahn, D.
B. MacQueen, and G. D. Plotkin (Berlin; Heidelberg: Springer), 279–300.
doi: 10.1007/3-540-13346-1_14

Düdder, B., Martens, M., Rehof, J., and Urzyczyn, P. (2012). “Bounded
combinatory logic,” in Computer Science Logic (CSL’12) - 26th International

Workshop/21st Annual Conference of the EACSL, CSL 2012, Vol. 16 of LIPIcs,
eds P. Cégielski and A. Durand (Fontainebleau: Schloss Dagstuhl - Leibniz-
Zentrum für Informatik), 243–258.

Garrette, D., Dyer, C., Baldridge, J., and Smith, N. A. (2015). “Weakly-supervised
grammar-informed Bayesian CCG parser learning,” in Proceedings of the

Twenty-Ninth AAAI Conference on Artificial Intelligence, eds B. Bonet and S.
Koenig (Austin, TX: AAAI Press), 2246–2252.

Hindley, J. R., and Seldin, J. P. (1986). Introduction to Combinators and Lambda-

Calculus. Cambridge: Cambridge University Press.
Kašterović, S., and Ghilezan, S. (2020). Kripke-style semantics and completeness

for full simply typed lambda calculus. J. Log. Comput. 30, 1567–1608.
doi: 10.1093/logcom/exaa055

Liang, P., Jordan, M. I., and Klein, D. (2010). “Learning programs: a hierarchical
Bayesian approach,” in Proceedings of the 27th International Conference on

Machine Learning (ICML-10), eds J. Fürnkranz and T. Joachims (Haifa:
Omnipress), 639–646.

Mitchell, J. C., and Moggi, E. (1991). Kripke-style models for typed lambda
calculus. Ann Pure Appl. Logic 51, 99–124. doi: 10.1016/0168-0072(91)90067-V

Ong, C. L., and Tsukada, T. (2012). “Two-level game semantics, intersection
types, and recursion schemes,” in Automata, Languages, and Programming -
39th International Colloquium, ICALP 2012, Vol. 7392 of Lecture Notes in

Computer Science, eds A. Czumaj, K.Mehlhorn, A.M. Pitts, and R.Wattenhofer
(Warwick: Springer), 325–336. doi: 10.1007/978-3-642-31585-5_31

Frontiers in Computer Science | www.frontiersin.org 9 July 2022 | Volume 4 | Article 792570

https://doi.org/10.1006/inco.1995.1086
https://doi.org/10.2307/2273659
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1201/b11046
https://doi.org/10.1093/jigpal/10.4.357
https://doi.org/10.2307/2371045
https://doi.org/10.1007/BF02011875
https://doi.org/10.2307/2370619
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1016/0304-3975(92)90306-Z
https://doi.org/10.1007/3-540-13346-1_14
https://doi.org/10.1093/logcom/exaa055
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1007/978-3-642-31585-5_31
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Ghilezan and Kašterović Semantics for Combinatory Logic

Pierre Desclés, J. (2004). “Combinatory logic, language, and
cognitive representations,” in Alternative Logics. Do Sciences Need

Them?, ed P. Weingartner (Berlin: Springer Verlag), 115–148.
doi: 10.1007/978-3-662-05679-0_9

Pottinger, G. (1980). “A type assignment for the strongly normalizable λ-terms,” in
To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
eds J. P. Seldin and J. R. Hindley (London: Academic Press), 561–577.

Rehof, J., and Urzyczyn, P. (2011). “Finite combinatory logic with intersection
types,” in Typed Lambda Calculi and Applications - 10th International

Conference, TLCA 2011, Volume 6690 of Lecture Notes in Computer Science, ed
C. L. Ong (Novi Sad: Springer), 169–183. doi: 10.1007/978-3-642-21691-6_15

Sallé, P. (1978). “Une extension de la théorie des types en lambda-
calcul,” in 5th International Conference on Automata, Languages and

Programming, ICALP’78, Vol. 62 of Lecture Notes in Computer Science, eds
G. Ausiello and C. Böhm (Udine: Springer), 398–410. doi: 10.1007/3-540-088
60-1_30

Schönfinkel, M. (1924). Über die bausteine der mathematischen logik.Math. Ann.
92, 305–316. doi: 10.1007/BF01448013

van Bakel, S., Barbanera, F., and de’Liguoro, U. (2018). Intersection types
for the lambda-mu calculus. arXiv:1704.00272. doi: 10.48550/arXiv.1704.
00272

Venneri, B. (1994). Intersection types as logical formulae. J. Log. Comput. 4,
109–124. doi: 10.1093/logcom/4.2.109

Wolfram, S. (2021). Combinators: a centennial view. CoRR, abs/2103.12811.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ghilezan and Kašterović. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computer Science | www.frontiersin.org 10 July 2022 | Volume 4 | Article 792570

https://doi.org/10.1007/978-3-662-05679-0_9
https://doi.org/10.1007/978-3-642-21691-6_15
https://doi.org/10.1007/3-540-08860-1_30
https://doi.org/10.1007/BF01448013
https://doi.org/10.48550/arXiv.1704.00272
https://doi.org/10.1093/logcom/4.2.109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Semantics for Combinatory Logic With Intersection Types
	1. Introduction
	1.1. Background and Motivation
	1.2. Organization of the Paper

	2. Combinatory Logic With Intersection Types
	2.1. Combinatory Logic
	2.2. Intersection Types

	3. Semantics for CL
	4. Soundness and Completeness Results
	4.1. Soundness and Completeness of Equational Theory EQη
	4.2. Soundness and Completeness of Type-Assignment System CL

	5. Discussion and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

