
A Proof of the
Standardization Theorem in λ-Calculus

Ryo Kashima
Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

Ookayama, Meguro, Tokyo 152-8552, Japan.

e-mail: kashima@is.titech.ac.jp

August 2000

Abstract

We present a new proof of the standardization theorem in λ-calculus, which
is performed by inductions based on an inductive definition of β-reducibility
with a standard sequence.

1 Introduction

The standardization theorem is a fundamental theorem in reduction theory of λ-
calculus, which states that if a λ-term M β-reduces to a λ-term N , then there is
a “standard” β-reduction sequence from M to N . This paper gives a new simple
proof of this and some related theorems.

In literature (e.g., [1], [2], [3]), there have been some proofs of the standardization
theorem. Compared with these, a feature of the presented proof is that we use
neither the notion of “residuals” nor the separation of the “head” and “internal”
reductions. The key to our proof is an inductive definition of β-reducibility with a
standard sequence (Definition 3.2). In virtue of this definition, all the proof can be
performed by easy inductions.

In Section 2, we give basic definitions. In Section 3, we prove the standardization
theorem. In Section 4, we prove the quasi-leftmost reduction theorem, and we
mention a result concerning the length of the standard β-reduction sequences.

The author would like to thank Professor Masako Takahashi for her valuable
comments on an earlier version of this paper.

2 Preliminaries

We follow the notations and terminology of [1] unless otherwise stated. Capital let-
ters A,B, . . . denote arbitrary (type-free) λ-terms, and small letters x, y, . . . denote
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arbitrary variables. Terms of the form λx.M are called abstractions. The symbol
≡ means syntactic equality modulo α-congruence. M [x := N ] denotes the result of
substituting N for all the free occurrences of x in M with adequate change of bound
variables. By r(M), we mean the number of all the occurrences of β-redexes in M .

Definition 2.1 For λ-terms M,N and a natural number n ≥ 1, we define a relation
M

n→ N inductively as follows.

(1) (λx.A)B
1→ A[x := B].

(2) If A
n→ B and A is not an abstraction, then AC

n→ BC.

(3) If A
n→ B and A is an abstraction, then AC

n+1→ BC.

(4) If A
n→ B and C is not an abstraction, then CA

n+r(C)→ CB.

(5) If A
n→ B and C is an abstraction, then CA

n+r(C)+1→ CB.

(6) If A
n→ B, then λx.A

n→ λx.B.

M
n→ N represents that N is obtained from M by contracting the n-th β-redex in

M . The usual notions M →β N (i.e., N is obtained from M by one step β-reduction)
and M →` N (i.e., N is obtained from M by one step leftmost reduction) and their
sequences ³β and ³` are defined as follows.

Definition 2.2

• A →β B if A
n→ B for some n.

• A →` B if A
1→ B.

• ³β and ³` are the reflexive transitive closure of →β and →` respectively.

The notions of standard and quasi-leftmost β-reduction sequences are defined as
follows.

Definition 2.3

• A β-reduction sequence A0
n1→ A1

n2→ · · · nk→ Ak is called standard if n1 ≤ n2 ≤
· · · ≤ nk.

• An infinite β-reduction sequence is called quasi-leftmost if it contains infinitely
many leftmost reduction steps →`.

Now the theorems are precisely stated as follows. While they have some proofs
in literature, we present a simpler proof in the succeeding sections.

Theorem 2.4 (Standardization Theorem) If M ³β N , then there is a stan-
dard β-reduction sequence from M to N .
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Theorem 2.5 (Quasi-Leftmost Reduction Theorem) If M has a β-normal
form, then there is no infinite quasi-leftmost β-reduction sequence from M .

Note that if N ′ n→ N and N is a β-normal form, then n = 1. Therefore the
following is a special case of the standardization theorem.

Theorem 2.6 (Leftmost Reduction Theorem) If M ³β N and N is a β-
normal form, then M ³` N .

3 Proof of the standardization theorem

Two binary relations ³hap and ³st on the set of λ-terms are inductively defined as
follows, which are the keys to our proof. (“hap” and “st” stand for “head reduction
in application” and “standard” respectively.)

Definition 3.1

(1) A ³hap A.

(2) (λx.A0)A1A2 · · ·An ³hap A0[x := A1]A2 · · ·An, where n ≥ 1.

(3) If A ³hap B and B ³hap C, then A ³hap C.

Definition 3.2

(1) If L ³hap x, then L ³st x.

(2) If L ³hap AB, A ³st C, and B ³st D, then L ³st CD.

(3) If L ³hap λx.A and A ³st B, then L ³st λx.B.

Lemma 3.3

(1) If M ³hap N , then M ³` N .

(2) If M ³st N , then there is a standard β-reduction sequence from M to N .

Proof (1) By induction on the definition of M ³hap N . (2) By induction on the

definition of M ³st N , using (1).

Lemma 3.4

(1) M ³st M .

(2) If M ³hap N , then MP ³hap NP .

(3) If L ³hap M ³st N , then L ³st N .

(4) If M ³hap N , then M [z := P ] ³hap N [z := P ].
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(5) If M ³st N and P ³st Q, then M [z := P ] ³st N [z := Q].

Proof (1) By induction on the structure of M . (2) By induction on the definition
of M ³hap N . (3) By the definition of M ³st N and the transitivity of ³hap. (4)
By induction on the definition of M ³hap N . (5) By induction on the definition of

M ³st N , using (3) and (4).

Lemma 3.5 If L ³st (λx.M)N , then L ³st M [x := N ].

Proof By the definition of L ³st (λx.M)N , we have

(i) L ³hap PN ′,

(ii) P ³st λx.M ,

(iii) N ′ ³st N ,

for some P and N ′; and similarly by (ii), we have

(iv) P ³hap λx.M ′,

(v) M ′ ³st M ,

for some M ′. Then we have

L ³hap PN ′ (by (i))
³hap (λx.M ′)N ′ (by (iv) and Lemma 3.4(2))
³hap M ′[x := N ′] (by Definition 3.1(2))
³st M [x := N ] (by (v), (iii) and Lemma 3.4(5))

and the transitivity of ³hap and Lemma 3.4(3) imply L ³st M [x := N ].

Lemma 3.6 If L ³st M →β N , then L ³st N .

Proof By induction on the definition of M →β N (i.e., M
n→ N for some n). Here

we show two cases (the other cases are similar).
(Case 1): M →β N is obtained by Definition 2.1(1). This is just the previous

Lemma 3.5.
(Case 2): M →β N is obtained by Definition 2.1(2); that is, M ≡ AC, N ≡ BC,

and

(i) A →β B.

In this case, we have

(ii) L ³hap A′C ′,

(iii) A′ ³st A,

(iv) C ′ ³st C,
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for some A′ and C ′ because of the definition of L ³st M(≡ AC). Then (iii), (i) and
the induction hypothesis imply the fact A′ ³st B, which shows L ³st BC(≡ N)

using (ii), (iv) and the definition of ³st.

Lemma 3.7 If M ³β N , then M ³st N .

Proof Suppose M ≡ M0 →β M1 →β · · · →β Mk ≡ N . We can show M ³st Mi for

i = 0, 1, . . . , k, by Lemmas 3.4(1) and 3.6.

Now the Standardization Theorem 2.4 is obvious by Lemmas 3.7 and 3.3(2).

4 Other results

Lemma 4.1 If L ³β M →` N , then L →`³β N , that is, L →` L′ ³β N for some
L′.

Proof By virture of Lemma 3.7, it is sufficient to show that if L ³st M →` N ,
then L →`³β N . This claim is proved by induction on the definition of M →` N

(i.e., M
1→ N). Here we show two cases (the other cases are similar).

(Case 1): M
1→ N is obtained by Definition 2.1(1). In this case, the proof of

Lemma 3.5 shows L →`³β N . (In the proof, L ³hap M ′[x := N ′] contains at least
one step →`.)

(Case 2): M
1→ N is obtained by Definition 2.1(4); that is, M ≡ CA, N ≡ CB,

and

(i) A
1→ B,

where C is a β-normal form and is not an abstraction. In this case, we have

(ii) L ³hap C ′A′,

(iii) C ′ ³st C,

(iv) A′ ³st A,

for some C ′ and A′ because of the definition of L ³st M(≡ CA); and each of them
implies the following.

(ii)+ L ≡ C ′A′ or L →`³β C ′A′. (By Lemma 3.3(1).)

(iii)+ C ′ ≡ C or C ′ →`³β C. (By the Leftmost Reduction Theo-
rem 2.6.)

(iv)+ A′ →`³β B. (By (i) and the induction hypothesis.)
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Moreover, we can show that C ′ is not an abstraction (otherwise C becomes an

abstraction). Then, (ii)+, (iii)+, and (iv)+ imply L →`³β CB(≡ N).

Now the Quasi-Leftmost Reduction Theorem 2.5 is easily proved as follows. Sup-
pose there is an infinite quasi-leftmost β-reduction sequence

M ³β→`³β→` · · · ³β→` · · ·

By Lemma 4.1, each →` step in this sequence can be moved to the left; and we
can construct an infinite sequence of →` starting from M . Thus, by the Leftmost
Reduction Theorem 2.6, M cannot have a β-normal form.

Finally, we make a remark on a result in [3], where Xi proved the standard-
ization theorem involving evaluation of the length of the standard β-reduction se-
quence. We can prove this result (Lemma 3.3 of [3]) by our method if we add
“evaluation of the number of reduction steps” to all the argument in Section 3, as
follows. (Definition 3.1) (1) A ³{0}

hap A. (2) (λx.A0)A1A2 · · ·An ³{1}
hap A0[x :=

A1]A2 · · ·An. (3) If A ³{n}
hap B and B ³{m}

hap C, then A ³{n+m}
hap C. (Defini-

tion 3.2) (1) If L ³{n}
hap x, then L ³{n}

st x. (2) If L ³{n}
hap AB, A ³{m}

st C,

and B ³{k}
st D, then L ³{n+m+k}

st CD. (3) If L ³{n}
hap λx.A and A ³{m}

st B,

then L ³{n+m}
st λx.B. (Lemma 3.4(5)) If M ³{m}

st N and P ³{p}
st Q, then

M [z := P ] ³{m+αp}
st N [z := Q], where α = |N |z = the number of free occurrences of

the variable z in N . (Lemma 3.5) If L ³{n}
st (λx.M)N , then L ³{m}

st M [x := N ]
for some m ≤ 1 + max{|M |x, 1} · n. The other lemmas are similarly altered.

References

[1] H. P. Barendregt, The Lambda Calculus, North-Holland (1984).

[2] M. Takahashi, Parallel reductions in λ-calculus, Information and Compu-
tation 118, pp.120-127, (1995)

[3] H. Xi, Upper bounds for standardizations and an application, Journal of Sym-
boloc Logic 64, pp.291-303, (1999)

6


