
Zip-zip Trees: Making Zip Trees More Balanced,
Biased, Compact, or Persistent⋆

Ofek Gila1, Michael T. Goodrich1, and Robert E. Tarjan2

1 University of California, Irvine CA 92697, USA
{ogila, goodrich}@uci.edu

2 Princeton University, Princeton NJ 08544, USA
ret@cs.princeton.edu

Abstract. We define simple variants of zip trees, called zip-zip trees,
which provide several advantages over zip trees, including overcoming a
bias that favors smaller keys over larger ones. We analyze zip-zip trees
theoretically and empirically, showing, e.g., that the expected depth of
a node in an n-node zip-zip tree is at most 1.3863 logn − 1 + o(1),
which matches the expected depth of treaps and binary search trees
built by uniformly random insertions. Unlike these other data structures,
however, zip-zip trees achieve their bounds using only O(log log n) bits
of metadata per node, w.h.p., as compared to the Θ(logn) bits per
node required by treaps. In fact, we even describe a “just-in-time” zip-
zip tree variant, which needs just an expected O(1) number of bits of
metadata per node. Moreover, we can define zip-zip trees to be strongly
history independent, whereas treaps are generally only weakly history
independent. We also introduce biased zip-zip trees, which have an
explicit bias based on key weights, so the expected depth of a key, k,
with weight, wk, is O(log(W/wk)), where W is the weight of all keys
in the weighted zip-zip tree. Finally, we show that one can easily make
zip-zip trees partially persistent with only O(n) space overhead w.h.p.

1 Introduction

A zip tree is a randomized binary search tree introduced by Tarjan, Levy, and
Timmel [27]. Each node contains a specified key and a small randomly generated
rank. Nodes are in symmetric order by key, smaller to larger, and in max-heap
order by rank. At a high level, zip trees are similar to other random search
structures, such as the treap data structure of Seidel and Aragon [24], the skip
list data structure of Pugh [21], and the randomized binary search tree
(RBST) data structure of Mart́ınez and Roura [17], but with two advantages:

1. Insertions and deletions in zip trees are described in terms of simple “zip”
and “unzip” operations rather than sequences of rotations as in treaps and
RBSTs, which are arguably more complicated; and

⋆ Research at Princeton Univ. was partially supported by a gift from Microsoft.
Research at Univ. of California, Irvine was supported by NSF Grant 2212129.

ar
X

iv
:2

30
7.

07
66

0v
1

 [
cs

.D
S]

 1
4

Ju
l 2

02
3

2. Like treaps, zip trees organize keys using random ranks, but the ranks used
by zip trees use Θ(log log n) bits each, whereas the key labels used by treaps
and RBSTs use Θ(log n) bits each. Also, as we review and expand upon, zip
trees are topologically isomorphic to skip lists, but use less space.

In addition, zip trees have a desirable privacy-preservation property with
respect to their history independence [16]. A data structure isweakly history
independent if, for any two sequences of operations X and Y that take the data
structure from initialization to state A, the distribution over memory after X is
performed is identical to the distribution after Y . Thus, if an adversary observes
the final state of the data structure, the adversary cannot determine the sequence
of operations that led to that state. A data structure is strongly history
independent, on the other hand, if, for any two (possibly empty) sequences
of operations X and Y that take a data structure in state A to state B, the
distribution over representations of B after X is performed on a representation,
r, is identical to the distribution after Y is performed on r. Thus, if an adversary
observes the states of the data structure at different times, the adversary cannot
determine the sequence of operations that lead to the second state beyond just
what can be inferred from the states themselves. For example, it is easy to show
that skip lists and zip trees are strongly history independent, and that treaps
and RBSTs are weakly history independent.3

Indeed, zip trees and skip lists are strongly history independent for exactly
the same reason, since Tarjan, Levy, and Timmel [27] define zip trees using a
tie-breaking rule for ranks that makes zip trees isomorphic to skip lists, so that,
for instance, a search in a zip tree would encounter the same keys as would be
encountered in a search in an isomorphic skip list. This isomorphism between
zip trees and skip lists has a potentially undesirable property, however, in that
there is an inherent bias in a zip tree that favors smaller keys over larger keys.
For example, as we discuss, the analysis from Tarjan, Levy, and Timmel [27]
implies that the expected depth of the smallest key in an (original) zip tree is
0.5 log n whereas the expected depth of the largest key is log n. Moreover, this
same analysis implies that the expected depth for any node in a zip tree is at
most 1.5 log n + O(1), whereas Seidel and Aragon [24] show that the expected
depth of any node in a treap is at most 1.3863 log n + 1, and Mart́ınez and
Roura [17] prove a similar result for RBSTs.

As mentioned above, the inventors of zip trees chose their tie-breaking rule
to provide an isomorphism between zip trees and skip lists. But one may ask if
there is a (hopefully simple) modification to the tie-breaking rule for zip trees
that makes them more balanced for all keys, ideally while still maintaining the
property that they are strongly history independent and that the metadata for
keys in a zip tree requires only O(log log n) bits per key w.h.p.

In this paper, we show how to improve the balance of nodes in zip trees
by a remarkably simple change to its tie-breaking rule for ranks. Specifically, we

3 If the random priorities used in a treap are distinct and unchanging for all keys
and all time (which occurs only probabilistically), then the treap is strongly history
independent.

describe and analyze a zip-tree variant we call zip-zip trees, where we give each
key a rank pair, r = (r1, r2), such that r1 is chosen from a geometric distribution
as in the original definition of zip trees, and r2 is an integer chosen uniformly
at random, e.g., in the range [1, logc n], for c ≥ 3. We build a zip-zip tree just
like an original zip tree, but with these rank pairs as its ranks, ordered and
compared lexicographically. We also consider a just-in-time (JIT) variant of zip-
zip trees, where we build the secondary r2 ranks bit by bit as needed to break
ties. Just like an original zip tree, zip-zip trees (with static secondary ranks)
are strongly history independent, and, in any variant, each rank in a zip-zip
tree requires only O(log log n) bits w.h.p. Nevertheless, as we show (and verify
experimentally), the expected depth of any node in a zip-zip tree storing n keys
is at most 1.3863 log n − 1 + o(1), whereas the expected depth of a node in an
original zip tree is 1.5 log n+O(1), as mentioned above. We also show (and verify
experimentally) that the expected depths of the smallest and largest keys in a
zip-zip tree are the same—namely, they both are at most 0.6932 log n+γ+o(1),
where γ = 0.577721566 . . . is the Euler-Mascheroni constant.

In addition to showing how to make zip trees more balanced, by using the
zip-zip tree tie-breaking rule, we also describe how to make them more biased for
weighted keys. Specifically, we study how to store weighted keys in a zip-zip tree,
to define the following variant (which can also be implemented for the original
zip-tree tie-breaking rule):

– biased zip-zip trees: These are a biased version of zip-zip trees, which
support searches with expected performance bounds that are logarithmic in
W/wk, where W is the total weight of all keys in the tree and wk is the
weight of the search key, k.

Biased zip-zip trees can be used in simplified versions of the link-cut tree data
structure of Sleator and Tarjan [26] for dynamically maintaining arbitrary trees,
which has many applications, e.g., see Acar [1].

Zip-zip trees and biased zip-zip trees utilize only O(log log n) bits of metadata
per key w.h.p. (assuming polynomial weights in the weighted case) and are
strongly history independent . The just-in-time (JIT) variant utilizes only O(1)
bits of metadata per operation w.h.p. but lacks history independence. Moreover,
if zip-zip trees are implemented using the tiny pointers technique of Bender,
Conway, Farach-Colton, Kuszmaul, and Tagliavini [5], then all of the non-key
data used to implement such a tree requires just O(n log log n) bits overall w.h.p.

Additional Prior Work. Before we provide our results, let us briefly review
some additional related prior work. Although this analysis doesn’t apply to
treaps or RBSTs, Devroye [8, 9] shows that the expected height of a randomly-
constructed binary search tree tends to 4.311 log n in the limit, which tightened a
similar earlier result of Flajolet and Odlyzko [12]. Reed [22] tightened this bound
even further, showing that the variance of the height of a randomly-constructed
binary search tree is O(1). Eberl, Haslbeck, and Nipkow [11] show that this
analysis also applies to treaps and RBSTs, with respect to their expected height.

Papadakis, Munro, and Poblete [20] provide an analysis for the expected search
cost in a skip list, showing the expected cost is roughly 2 log n.

With respect to weighted keys, Bent, Sleator, and Tarjan [6] introduce a
biased search tree data structure, for storing a set, K, of n weighted keys,
with a search time of O(log(W/wk)), where wk is the weight of the search key, k,
and W =

∑
k∈K wk. Their data structure is not history independent, however.

Seidel and Aragon [24] provide a weighted version of treaps, which are weakly
history independent and have expectedO(log(W/wk)) access times, but weighted
treaps have weight-dependent key labels that use exponentially more bits than
are needed for weighted zip-zip trees. Afek, Kaplan, Korenfeld, Morrison, and
Tarjan [2] provide a fast concurrent self-adjusting biased search tree when the
weights are access frequencies. Zip trees and by extension zip-zip trees would
similarly work well in a concurrent setting as most updates only affect the bottom
of the tree, although such an implementation is not explored in this paper.
Bagchi, Buchsbaum, and Goodrich [4] introduce randomized biased skip lists,
which are strongly history independent and where the expected time to access a
key, k, is likewise O(log(W/wk)). Our weighted zip-zip trees are dual to biased
skip lists, but use less space.

2 A Review of Zip Trees

In this section, we review the (original) zip tree data structure of Tarjan, Levy,
and Timmel [27].

A Brief Review of Skip Lists. We begin by reviewing a related structure,
namely, the skip list structure of Pugh [21]. A skip list is a hierarchical, linked
collection of sorted lists that is constructed using randomization. All keys are
stored in level 0, and, for each key, k, in level i ≥ 0, we include k in the list in
level i + 1 if a random coin flip (i.e., a random bit) is “heads” (i.e., 1), which
occurs with probability 1/2 and independent of all other coin flips. Thus, we
expect half of the elements from level i to also appear in level i+1. In addition,
every level includes a node that stores a key, −∞, that is less than every other
key, and a node that stores a key, +∞, that is greater than every other key. The
highest level of a skip list is the smallest i such that the list at level i only stores
−∞ and +∞. (See Figure 1.) The following theorem follows from well-known
properties of skip lists.

Theorem 1. Let S be a skip list built from n distinct keys. The probability that
the height of S is more than log n+f(n) is at most 2−f(n), for any monotonically
increasing function f(n) > 0.

Proof. Note that the highest level in S is determined by the random variable
X = max{X1, X2, . . . , Xn}, where each Xi is an independent geometric random
variable with success probability 1/2. Thus, for any i = 1, 2, . . . , n,

Pr(Xi > log n+ f(n)) < 2−(logn+f(n)) = 2−f(n)/n;

hence, by a union bound, Pr(X > log n+ f(n)) < 2−f(n). ⊓⊔

Level 0

Level 1

Level 2

Level 3

Level 4

−∞

−∞

−∞

−∞

−∞

-19 -8

-8

-4 -2 -1

-1

-1

-1

2

2

5 7 12 16

16

21

21

21

21

22 29

29

29

52 55

55

∞

∞

∞

∞

∞

Fig. 1: An example skip list.

Zip Trees and Their Isomorphism to Skip Lists. Let us next review the
definition of the (original) zip tree data structure [27]. A zip tree is a binary
search tree where nodes are max-heap ordered according to random ranks, with
ties broken in favor of smaller keys, so that the parent of a node has rank greater
than that of its left child and no less than that of its right child [27]. The rank
of a node is drawn from a geometric distribution with success probability 1/2,
starting from a rank 0, so that a node has rank k with probability 1/2k+1.

As noted by Tarjan, Levy, and Timmel [27], there is a natural isomorphism
between a skip-list, L, and a zip tree, T , where L contains a key k in its level-i
list if and only if k has rank at least i in T . That is, the rank of a key, k, in
T equals the highest level in L that contains k. See Figure 2. Incidentally, this
isomorphism is topologically identical to a duality between skip lists and binary
search trees observed earlier by Dean and Jones [7], but the constructions of
Dean and Jones are for binary search trees that involve rotations to maintain
balance and have different metadata than zip trees, so, apart from the topological
similarities, the analyses of Dean and Jones don’t apply to zip trees. As we review
in an appendix, insertion and deletion in a zip tree are done by simple “unzip”
and “zip” operations, and these same algorithms also apply to the variants we
discuss in this paper, with the only difference being the way we define ranks.

An advantage of a zip tree, T , over its isomorphic skip list, L, is that T ’s
space usage is roughly half of that of L, and T ’s search times are also better.

-19

0
-8

1

-4

0

-2

0

-1

3

2

1

5

0

7

0

12

0

16

1

21

3

22

0
29

2

52

0
55

1

Fig. 2: An example zip tree, corresponding to the skip list in Figure 1.

Nevertheless, there is a potential undesirable property of zip trees, in that an
original zip tree is biased towards smaller keys, as we show in the following.

Theorem 2. Let T be an (original) zip tree storing n distinct keys. Then the
expected depth of the smallest key is 0.5 log n+O(1) whereas the expected depth
of the largest key is log n+O(1).

Proof. The bound for the largest (resp., smallest) key follows immediately from
Lemma 3.3 (resp., Lemma 3.4) from Tarjan, Levy, and Timmel [27] and the fact
that the expect largest rank in T is at most log n+O(1). ⊓⊔

That is, the expected depth of the largest key in an original zip tree is twice
that of the smallest key. This bias also carries over, unfortunately, into the
characterization of Tarjan, Levy, and Timmel [27] for the expected depth of
a node in an original zip tree, which they show is at most 1.5 log n + O(1). In
contrast, the expected depth of a node in a treap or randomized binary search
tree can be shown to be at most 1.39 log n+O(1) [17,24].

3 Zip-zip Trees

In this section, we define and analyze the zip-zip tree data structure.

Uniform Zip Trees. As a warm-up, let us first define a variant to an original
zip tree, called a uniform zip tree, which is a zip tree where we define the
rank of each key to be a random integer drawn independently from a uniform
distribution over a suitable range. We perform insertions and deletions in a
uniform zip tree exactly as in an original zip tree, except that rank comparisons
are done using these uniform ranks rather than using ranks drawn from a
geometric distribution. Thus, if there are no rank ties that occur during its
construction, then a uniform zip tree is a treap [24]. But if a rank tie occurs, we
resolve it using the tie-breaking rule for a zip tree, rather than doing a complete
tree rebuild, as is done for a treap [24]. Still, we introduce uniform zip trees only
as a stepping stone to our definition of zip-zip trees, which we give next.

Zip-zip Trees. A zip-zip tree is a zip tree where we define the rank of each key
to be the pair, r = (r1, r2), where r1 is drawn independently from a geometric
distribution with success probability 1/2 (as in the original zip tree) and r2
is an integer drawn independently from a uniform distribution on the interval
[1, logc n], for c ≥ 3. We perform insertions and deletions in a zip-zip tree exactly
as in an original zip tree, except that rank comparisons are done lexicographically
based on the (r1, r2) pairs. That is, we perform an update operation focused
primarily on the r1 ranks, as in the original zip tree, but we break ties by
reverting to r2 ranks. And if we still get a rank tie for two pairs of ranks, then
we break these ties as in original zip tree approach, biasing in favor of smaller
keys. Fortunately, as we show, such ties occur with such low probability that
they don’t significantly impact the expected depth of any node in a zip-zip tree,

-19

(0,33) -8

(1,26)

-4

(0,31)

-2

(0,1)

-1

(3,13)

2

(1,1)

5

(0,23) 7

(0,46)

12

(0,13)

16

(1,49)

21

(3,31)

22

(0,21)

29

(2,20)

52

(0,2) 55

(1,38)

Fig. 3: A zip-zip tree, with each node labeled with its (r1, r2) rank. Each shaded
subtree is an r1-rank group defining a uniform zip tree based on r2 ranks.

and this also implies that the expected depth of the smallest key in a zip-zip
tree is the same as for the largest key.

Let xi be a node in a zip-zip tree, T . Define the r1-rank group of xi as the
connected subtree of T comprising all nodes with the same r1-rank as xi. That
is, each node in xi’s r1-rank group has a rank tie with xi when comparing ranks
with just the first rank coordinate, r1.

Lemma 1. The r1-rank group for any node, xi, in a zip-zip tree is a uniform
zip tree defined using r2-ranks.

Proof. The proof follows immediately from the definitions. ⊓⊔

Incidentally, Lemma 1 is the motivation for the name “zip-zip tree,” since a
zip-zip tree can be viewed as a zip tree comprised of little zip trees. Moreover, this
lemma immediately implies that a zip-zip tree is strongly history independent,
since both zip trees and uniform zip trees are strongly history independent.

See Figure 3.

Lemma 2. The number of nodes in an r1-rank group in a zip-zip tree, T storing
n keys has expected value 2 and is at most 2 log n w.h.p.

Proof. By the isomorphism between zip trees and skip lists, the set of nodes
in an r1-rank group in T is dual to a sequence of consecutive nodes in a level-
r1 list in the skip list but not in the level-(r1 + 1) list. Thus, the number of
nodes, X, in an r1-rank group is a random variable drawn from a geometric
distribution with success probability 1/2; hence, E[X] = 2 and X is at most
2 log n with probability at least 1 − 1/n2. Moreover, by a union bound, all the
r1-rank groups in T have size at most 2 log n with probability at least 1− 1/n.

⊓⊔

We can also define a variant of a zip-zip tree that is not history independent
but which uses only O(1) bits of metadata per key in expectation.

Just-in-Time Zip-zip Trees. In a just-in-time (JIT) zip-zip tree, we
define the (r1, r2) rank pair for a key, xi, so that r1 is (as always) drawn
independently from a geometric distribution with success probability 1/2, but
where r2 is an initially empty string of random bits. If at any time during an
update in a JIT zip-zip tree, there is a tie between two rank pairs, (r1,i, r2,i)
and (r1,j , r2,j), for two keys, xi and xj , respectively, then we independently add
unbiased random bits, one bit at a time, to r2,i and r2,j until xi and xj no longer
have a tie in their rank pairs, where r2-rank comparisons are done by viewing
the binary strings as binary fractions after a decimal point.

Note that the definition of an r1-rank group is the same for a JIT zip-zip tree
as a (standard) zip-zip tree. Rather than store r1-ranks explicitly, however, we
store them as a difference between the r1-rank of a node and the r1-rank of its
parent (except for the root). Moreover, by construction, each r1-rank group in a
JIT zip-zip tree is a treap; hence, a JIT zip-zip tree is topologically isomorphic
to a treap. We prove the following theorem in an appendix.

Theorem 3. Let T be a JIT zip-zip tree resulting from n update operations
starting from an initially empty tree. The expected number of bits for rank
metadata in any non-root node in T is O(1) and the number of bits required
for all the rank metadata in T is O(n) w.h.p.

Depth Analysis. The main theoretical result of this paper is the following.

Theorem 4. The expected depth, δj, of the j-th smallest key in a zip-zip tree,
T , storing n keys is equal to Hj +Hn−j+1 − 1+ o(1), where Hn =

∑n
i=1(1/i) is

the n-th harmonic number.

Proof. Let us denote the ordered list of (distinct) keys stored in T as L =
(x1, x2, . . . , xn), where we use “xj” to denote both the node in T and the key
that is stored there. Let X be a random variable equal to the depth of the j-th
smallest key, xj , in T , and note that

X =
∑

i=1,...,j−1,j+1,...,n

Xi,

where Xi is an indicator random variable that is 1 iff xi is an ancestor of xj .
Let A denote the event where the r1-rank of the root, z, of T is more than
3 log n, or the total size of all the r1-rank groups of xj ’s ancestors is more than
d log n, for a suitable constant, d, chosen so that, by Lemma 3 (in an appendix),
Pr(A) ≤ 2/n2. Let B denote the event, conditioned on A not occurring, where
the r1-rank group of an ancestor of xj contains two keys with the same rank,
i.e., their ranks are tied even after doing a lexicographic rank comparison. Note
that, conditioned on A not occurring, and assuming c ≥ 4 (for the sake of a o(1)
additive term4), the probability that any two keys in any of the r1-rank groups of
xj ’s ancestors have a tie among their r2-ranks is at most d2 log2 n/ log4 n; hence,

4 Taking c = 3 would only cause an O(1) additive term.

Pr(B) ≤ d2/ log2 n. Finally, let C denote the complement event to both A and
B, that is, the r1-rank of z is less than 3 log n and each r1-rank group for an
ancestor of xj has keys with unique (r1, r2) rank pairs. Thus, by the definition
of conditional expectation,

δj = E[X] = E[X|A] · Pr(A) + E[X|B] · Pr(B) + E[X|C] · Pr(C)

≤ 2n

n2
+

d3 log n

log2 n
+ E[X|C]

≤ E[X|C] + o(1).

So, for the sake of deriving an expectation forX, let us assume that the condition
C holds. Thus, for any xi, where i ̸= j, xi is an ancestor of xj iff xi’s rank pair,
r = (r1, r2), is the unique maximum such rank pair for the keys from xi to xj ,
inclusive, in L (allowing for either case of xi < xj or xj < xi, and doing rank
comparisons lexicographically). Since each key in this range has equal probability
of being assigned the unique maximum rank pair among the keys in this range,

Pr(Xi = 1) =
1

|i− j|+ 1
.

Thus, by the linearity of expectation,

E[X|C] = Hj +Hn+1−j − 1.

Therefore, δj = Hj +Hn+1−j − 1 + o(1). ⊓⊔

This immediately gives us the following:

Corollary 1. The expected depth, δj, of the j-th smallest key in a zip-zip tree,
T , storing n keys can be bounded as follows:

1. If j = 1 or j = n, then δj < lnn+ γ + o(1) < 0.6932 log n+ γ + o(1), where
γ = 0.57721566 . . . is the Euler-Mascheroni constant.

2. For any 1 ≤ j ≤ n, δj < 2 lnn− 1 + o(1) < 1.3863 log n− 1 + o(1).

Proof. The bounds all follow from Theorem 4, the fact that ln 2 = 0.69314718 . . .,
and Franel’s inequality (see, e.g., Guo and Qi [14]):

Hn < lnn+ γ +
1

2n
.

Thus, for (1), if j = 1 or j = n, δj = Hn < lnn+ γ + o(1).
For (2), if 1 ≤ j ≤ n,

δj = Hj +Hn−j+1 − 1

< ln j + ln(n− j + 1) + 2γ − 1 + o(1)

≤ 2 lnn− 1 + o(1),

since ln 2 > γ and j(n− j + 1) is maximized at j = n/2 or j = (n+ 1)/2. ⊓⊔

Incidentally, these are actually tighter bounds than those derived by Seidel
and Aragon for treaps [24], but similar bounds can be shown to hold for treaps.

Fig. 4: Experimental results for the depth discrepancy between the smallest and
largest keys in the original, uniform (treap), and zip-zip variants of the zip tree.
Each data point is scaled down by a factor of log n (base 2).

Making Zip-zip Trees Partially Persistent. A data structure that can be
updated in a current version while also allowing for queries in past versions is
said to be partially persistent, and Driscoll, Sarnak, Sleator, and Tarjan [10]
show how to make any bounded-degree linked structure, like a binary search tree,
T , into a partially persistent data structure by utilizing techniques employing
“fat nodes” and “node splitting.” They show that if a sequence of n updates
on T only modifies O(n) data fields and pointers, then T can be made partially
persistent with only an constant-factor increase in time and space for processing
the sequence of updates, and allows for queries in any past instance of T . We
show in an appendix that zip-zip trees have this property, w.h.p., thereby proving
the following theorem.

Theorem 5. One can transform an initially empty zip-zip tree, T , to be partially
persistent, over the course of n insert and delete operations, so as to support,
w.h.p., O(log n) amortized-time updates in the current version and O(log n)-time
queries in the current or past versions, using O(n) space.

4 Experiments

We augment our theoretical findings with experimental results, where we
repeatedly constructed search trees with keys, {0, 1, . . . , n−1}, inserted in order
(since insertion order doesn’t matter). Randomness was obtained by using a
linear congruential pseudo-random generator. For both uniform zip trees and
zip-zip trees with static r2-ranks, we draw integers independently for the uniform
ranks from the intervals [1, nc], and [1, logc n], respectively, choosing c = 3.

Depth Discrepancy. First, we consider the respective depths of the smallest
and the largest keys in an original zip tree, compared with the depths of these

keys in a zip-zip tree. See Figure 4. The empirical results for the depths for
smallest and largest keys in a zip tree clearly match the theoretic expected values
of 0.5 log n and log n, respectively, from Theorem 2. For comparison purposes,
we also plot the depths for smallest and largest keys in a uniform zip tree,
which is essentially a treap, and in a zip-zip tree (with static r2-ranks). Observe
that, after the number of nodes, n, grows beyond small tree sizes, there is no
discernible difference between the depths of the largest and smallest keys, and
that this is very close to the theoretical bound of 0.69 log n. Most notably, apart
from some differences for very small trees, the depths for smallest and largest
keys in a zip-zip tree quickly conform to the uniform zip tree results, while using
exponentially fewer bits for each node’s rank.

Average Key Depth and Tree Height. Next, we empirically study the
average key depth and average height for the three aforementioned zip tree
variants. See Figure 5. Notably, we observe that for all tree sizes, despite using
exponentially fewer rank bits per node, the zip-zip tree performs indistinguish-
ably well from the uniform zip tree, equally outperforming the original zip tree
variant. The average key depths and average tree heights for all variants appear
to approach some constant multiple of log n. For example, the average depth
of a key in an original zip tree, uniform zip tree, and zip-zip tree reached
1.373 log n, 1.267 log n, 1.267 log n, respectively. Interestingly, these values are
roughly 8.5% less than the original zip tree and treap theoretical average key
depths of 1.5 log n [27] and 1.39 log n [24], respectively, suggesting that both
variants approach their limits at a similar rate. Also, we note that our empirical
average height bounds for uniform zip trees and zip-zip trees get as high as
2.542 log n. It is an open problem to bound these expectations theoretically, but
we show in an appendix that the height of a zip-zip tree is at most 3.82 log n
with probability 1− o(1), which clearly beats the 4.31107 log n expected height
for a randomly-constructed binary search tree [8, 9, 12,22].

Rank Comparisons. Next, we experimentally determine the frequency of
complete rank ties (collisions) for the uniform and zip-zip variants. See Figure 6
(left). The experiments show how the frequencies of rank collisions decrease
polynomially in n for the uniform zip tree and in log n for the second rank of the
zip-zip variant. This reflects how these rank values were drawn uniformly from
a range of nc and logc n, respectively. Specifically, we observe the decrease to be
polynomial to n−2.97 and log−2.99 n, matching our chosen value of c being 3.

Just-in-Time Zip-zip Trees. Finally, we show how the just-in-time zip-zip
tree variant uses an expected constant number of bits per node. See Figure 6
(right). We observe a results of only 1.133 bits per node for storing the geometric
(r1) rank differences, and only 2.033 bits per node for storing the uniform (r2)
ranks, leading to a remarkable total of 3.166 expected bits per node of rank
metadata to achieve ideal treap properties.

Fig. 5: Experimental results for the average node depth and tree height,
comparing the original, uniform (treap-like), and zip-zip variants of the zip tree.
Each data point is scaled down by a factor of log n (base 2).

Fig. 6: (Left) The frequency of encountered rank ties per rank comparison for
the uniform variant and per element insertion for the zip-zip variant. (Right)
The metadata size for the just-in-time implementation of the zip-zip tree.

5 Biased Zip-zip Trees

In this section, we describe how to make zip-zip trees biased for weighted keys. In
this case, we assume each key, k, has an associated weight, wk, such as an access
frequency. Without loss of generality, we assume that weights don’t change, since
we can simulate a weight change by deleting and reinserting a key with its new
weight.

Our method for modifying zip-zip trees to accommodate weighted keys is
simple—when we insert a key, k, with weight, wk, we now assign k a rank pair,
r = (r1, r2), such that r1 is ⌊logwk⌋ + Xk, where Xk is drawn independently
from a geometric distribution with success probability 1/2, and r2 is an integer
independently chosen uniformly in the range from 1 to ⌈logc n⌉, where c ≥ 3.
Thus, the only modification to our zip-zip tree construction to define a biased
zip-zip tree is that the r1 component is now a sum of a logarithmic rank and a

value drawn from a geometric distribution. As with our zip-zip tree definition for
unweighted keys, all the update and search operations for biased zip-zip trees are
the same as for the original zip trees, except for this modification to the rank,
r, for each key (and performing rank comparisons lexicographically). Therefore,
assuming polynomial weights, we still can represent each such rank, r, using
O(log log n) bits w.h.p.

We also have the following theorem, which implies the expected search
performance bounds for weighted keys.

Theorem 6. The expected depth of a key, k, with weight, wk, in a biased zip-zip
tree storing a set, K, of n keys is O(log(W/wk)), where W =

∑
k∈K wk.

Proof. By construction, a biased zip-zip tree, T , is dual to a biased skip list, L,
defined on K with the same r1 ranks as for the keys in K as assigned during their
insertions into T . Bagchi, Buchsbaum, and Goodrich [4] show that the expected
depth of a key, k, in L is O(log(W/wk)). Therefore, by Theorem 1, and the
linearity of expectation, the expected depth of k in T is O(log(W/wk)), where,
as mentioned above, W is the sum of the weights of the keys in T and wk is the
weight of the key, k. ⊓⊔

Thus, a biased zip-zip tree has similar expected search and update perfor-
mance as a biased skip list, but with reduced space, since a biased zip-zip tree
has exactly n nodes, whereas, assuming a standard skip-list representation where
we use a linked-list node for each instance of a key, k, on a level in the skip list
(from level-0 to the highest level where k appears) a biased skip list has an
expected number of nodes equal to 2n + 2

∑
k∈K logwk. For example, if there

are nε keys with weight nε, then such a biased skip list would require Ω(n log n)
nodes, whereas a dual biased zip-zip tree would have just n nodes.

Further, due to their simplicity and weight biasing, we can utilize biased zip-
zip trees as the biased auxiliary data structures in the link-cut dynamic tree data
structure of Sleator and Tarjan [26], thereby providing a simple implementation
of link-cut trees.

References

1. Acar, U.A.: Self-Adjusting Computation. Ph.D. thesis, Carnegie Mellon Univ.
(2005)

2. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: The
CB tree: a practical concurrent self-adjusting search tree 27(6), 393–
417. https://doi.org/10.1007/s00446-014-0229-0, https://doi.org/10.1007/
s00446-014-0229-0

3. Alon, N., Spencer, J.H.: The Probabilistic Method. John Wiley & Sons, 4th edn.
(2016)

4. Bagchi, A., Buchsbaum, A.L., Goodrich, M.T.: Biased skip lists. Algorithmica 42,
31–48 (2005)

5. Bender, M.A., Conway, A., Farach-Colton, M., Kuszmaul, W., Tagliavini, G.: Tiny
pointers. In: ACM-SIAM Symposium on Discrete Algorithms (SODA). pp. 477–
508 (2023). https://doi.org/10.1137/1.9781611977554.ch21, https://epubs.siam.
org/doi/abs/10.1137/1.9781611977554.ch21

6. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased search trees. SIAM Journal on
Computing 14(3), 545–568 (1985)

7. Dean, B.C., Jones, Z.H.: Exploring the duality between skip lists and binary search
trees. In: Proc. of the 45th Annual Southeast Regional Conference (ACM-SE).
pp. 395–399 (2007). https://doi.org/10.1145/1233341.1233413, https://doi.org/10.
1145/1233341.1233413

8. Devroye, L.: A note on the height of binary search trees. J. ACM 33(3), 489–498
(1986)

9. Devroye, L.: Branching processes in the analysis of the heights of trees. Acta
Informatica 24(3), 277–298 (1987)

10. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data struc-
tures persistent. Journal of Computer and System Sciences 38(1), 86–124
(1989). https://doi.org/https://doi.org/10.1016/0022-0000(89)90034-2, https://
www.sciencedirect.com/science/article/pii/0022000089900342

11. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random binary tree
structures. In: 9th Int. Conf. on Interactive Theorem Proving (ITP). pp. 196–214.
Springer (2018)

12. Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees.
Journal of Computer and System Sciences 25(2), 171–213 (1982)

13. Goodrich, M.T., Tamassia, R.: Algorithm Design and Applications. Wiley (2015)
14. Guo, B.N., Qi, F.: Sharp bounds for harmonic numbers.

Applied Mathematics and Computation 218(3), 991–995 (2011).
https://doi.org/https://doi.org/10.1016/j.amc.2011.01.089, https://www.
sciencedirect.com/science/article/pii/S009630031100124X

15. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Information Processing
Letters 33(6), 305–308 (1990)

16. Hartline, J.D., Hong, E.S., Mohr, A.E., Pentney, W.R., Rocke, E.C.: Characterizing
history independent data structures. Algorithmica 42, 57–74 (2005)

17. Mart́ınez, C., Roura, S.: Randomized binary search trees. J. ACM 45(2), 288–323
(1998). https://doi.org/10.1145/274787.274812, https://doi.org/10.1145/274787.
274812

18. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomization and
Probabilistic Techniques in Algorithms and Data Analysis. Cambridge University
Press, 2nd edn. (2017)

19. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

20. Papadakis, T., Ian Munro, J., Poblete, P.V.: Average search and update costs in
skip lists. BIT Numerical Mathematics 32(2), 316–332 (1992)

21. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (jun 1990). https://doi.org/10.1145/78973.78977, https://doi.org/
10.1145/78973.78977

22. Reed, B.: The height of a random binary search tree. J. ACM 50(3), 306–332
(2003)

23. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees.
Communications of the ACM 29(7), 669–679 (1986)

24. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4-5), 464–497
(1996)

25. Shiu, D.: Efficient computation of tight approximations to Chernoff bounds.
Computational Statistics pp. 1–15 (2022)

26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: 13th ACM
Symposium on Theory of Computing (STOC). pp. 114–122 (1981)

27. Tarjan, R.E., Levy, C., Timmel, S.: Zip trees. ACM Trans. Algorithms 17(4), 34:1–
34:12 (2021). https://doi.org/10.1145/3476830, https://doi.org/10.1145/3476830

A Insertion and Deletion in Zip Trees and Zip-zip Trees

The insertion and deletion algorithms for zip-zip trees are the same as those for
zip trees, except that in a zip-zip tree tree a node’s rank is a pair (r1, r2), as we
explain above, and rank comparisons are done lexicographically on these pairs.

To insert a new node x into a zip tree, we search for x in the tree until reaching
the node y that x will replace, namely the node y such that y.rank ≤ x.rank,
with strict inequality if y.key < x.key. From y, we follow the rest of the search
path for x, unzipping it by splitting it into a path, P , containing each node
with key less than x.key and a path, Q, containing each node with key greater
than x.key (recall that we assume keys are distinct) [27]. To delete a node x, we
perform the inverse operation, where we do a search to find x and let P and Q
be the right spine of the left subtree of x and the left spine of the right subtree
of x, respectively. Then we zip P and Q to form a single path R by merging
them from top to bottom in non-increasing rank order, breaking a tie in favor
of the smaller key [27]. See Figure 7.

-19

0
-8

1

-4

0

-2

0

-1

3

2

1

5

0

7

0

12

0

16

1

Insert 6

Delete 6

-19

0
-8

1

-4

0

-2

0

-1

3

2

1

5

0

6

2

7

0

12

0

16

1

Fig. 7: How insertion in a zip tree is done via unzipping and deletion is done via
zipping.

For completeness, we give the pseudo-code for the insert and delete opera-
tions, from Tarjan, Levy, and Timmel [27], in Figures 8 and 9.

function Insert(x)
rank ← x.rank ← RandomRank
key ← x.key
cur ← root
while cur ̸= null and (rank < cur.rank or (rank = cur.rank and key > cur.key)) do

prev ← cur
cur ← if key < cur.key then cur.left else cur.right

if cur = root then root← x
else if key < prev.key then prev.left← x
else prev.right← x

if cur = null then { x.left← x.right← null; return }
if key < cur.key then x.right← cur else x.left← cur
prev ← x

while cur ̸= null do
fix← prev

if cur.key < key then
repeat { prev ← cur; cur ← cur.right }
until cur = null or cur.key < key

else
repeat { prev ← cur; cur ← cur.left }
until cur = null or cur.key > key

if fix.key > key or (fix = x and prev.key > key) then
fix.left← cur

else
fix.right← cur

Fig. 8: Insertion in a zip tree (or zip-zip tree), from [27].

function Delete(x)
key ← x.key
cur ← root
while key ̸= cur.key do

prev ← cur
cur ← if key < cur.key then cur.left else cur.right

left← cur.left; right← cur.right

if left = null then cur ← right
else if right = null then cur ← left
else if left.rank ≥ right.rank then cur ← left
else cur ← right

if root = x then root← cur
else if key < prev.key then prev.left← cur
else prev.right← cur

while left ̸= null and right ̸= null do
if left.rank ≥ right.rank then

repeat { prev ← left; left← left.right }
until left = null or left.rank < right.rank
prev.right← right

else
repeat { prev ← right; right← right.left }
until right = null or left.rank ≥ right.rank
prev.left← left

Fig. 9: Deletion in a zip tree (or zip-zip tree), from [27].

B Omitted Proofs

In this appendix, we provide proofs that were omitted in the body of this paper.
We start with a simple lemma that our omitted proofs use.

Lemma 3. Let X be the sum of n independent geometric random variables with
success probability 1/2. Then, for t ≥ 2,

Pr(X > (2 + t)n) ≤ e−tn/10.

Proof. The proof follows immediately by a Chernoff bound for a sum of n
independent geometric random variables (see, e.g., Goodrich and Tamassia [13,
pp. 555–556]). ⊓⊔

Compacting a JIT Zip-zip Tree. We prove the following theorem in this
appendix.

Theorem 7 (Same as Theorem 3). Let T be a JIT zip-zip tree resulting from
n update operations starting from an initially-empty tree. The expected number
of bits for rank metadata in any non-root node in T is O(1) and the number of
bits required for all the rank metadata in T is O(n) w.h.p.

Proof. By the duality between zip trees and skip lists, the set of nodes in an r1-
rank group in T is dual to a sequence, L, of consecutive nodes in a level-r1 list in
the skip list but not in the level-(r1+1) list. Thus, since v is not the root, there is
a node, u, that is the immediate predecessor of the first node in L in the level-r1
list in the skip list, and there is a node, w, that is the immediate successor of the
last node in L in the level-r1 list in the skip list. Moreover, both u and v are in
the level-(r1+1) list in the skip list, and (since v is not the root) it cannot be the
case that u stores the key −∞ and w stores the key +∞. As an over-estimate
and to avoid dealing with dependencies, we will consider the r1-rank differences
determined by predecessor nodes (like u) separate from the r1-rank differences
determined by successor nodes (like w). Let us focus on predecessors, u, and
suppose u does not store −∞. Let r′1 > r1 be the highest level in the skip list
where u appears. Then the difference between the r1-rank of v and its parent is
at most r′1 − r1. That is, this rank difference is at most a random variable that
is drawn from a geometric distribution with success probability 1/2 (starting at
level r1 +1); hence, its expected value is at most 2. Further, for similar reasons,
the sum of all the r1-rank differences for all nodes in T that are determined
because of a predecessor node (like u) can be bounded by the sum, X, of n
independent geometric random variables with success probability 1/2. (Indeed,
this is also an over-estimate, since a r1-rank difference for a parent in the same r1-
rank group is 0, and some r1-rank differences may be determined by a successor
node that has a lower highest level in the dual skip list that a predecessor node.)
By Lemma 3, X is O(n) with (very) high probability, and a similar argument
applies to the sum of r1-rank differences determined by successor nodes. Thus,
with (very) high probability, the sum of all r1-rank differences between children
and parents in T is O(n).

Let us next consider all the r2-ranks in a JIT zip-zip tree. Recall that each
time there is a rank tie when using existing (r1, r2) ranks, during a given update,
we augment the two r2 ranks bit by bit until they are different. That is, the
length of each such augmentation is a geometric random variable with success
probability 1/2. Further, by the way that the zip and unzip operations work, the
number of such encounters that could possibly have a rank tie is upper bounded
by the sum of the r1-ranks of the keys involved, i.e., by the sum of n geometric
random variables with success probability 1/2. Thus, by Lemma 3, the number
of such encounters is at most N = 12n and the number of added bits that occur
during these encounters is at most 12N , with (very) high probability. ⊓⊔

Partially-Persistent Zip-zip Trees. We show in this appendix that one can
efficiently make a zip-zip tree partially persistent.

Theorem 8 (Same as Theorem 5). One can transform an initially-empty
zip-zip tree, T , to be partially persistent, over the course of n insert and delete
operations, so as to support, w.h.p., O(log n) amortized-time updates in the
current version and O(log n)-time queries in the current or past versions, using
O(n) space.

Proof. By the way that the zip and unzip operations work, the total number of
data or pointer changes in T over the course of n insert and delete operations
can be upper bounded by the sum of r1-ranks for all the keys involved, i.e., by
the sum of n geometric random variables with success probability 1/2. Thus, by
Lemma 3, the number of data or pointer changes in T is at most N = 12n with
(very) high probability. Driscoll, Sarnak, Sleator, and Tarjan [10] show how to
make any bounded-degree linked structure, like a binary search tree, T , into a
partially persistent data structure by utilizing techniques employing “fat nodes”
and “node splitting,” so that if a sequence of n updates on T only modifies O(n)
data fields and pointers, then T can be made partially persistent with only an
constant-factor increase in time and space for processing the sequence of updates,
and this allows for queries in any past instance of T in the same asymptotic time
as in the ephemeral version of T plus the time to locate the appropriate prior
version. Alternatively, Sarnak and Tarjan [23] provide a simpler set of techniques
that apply to binary search trees without parent parent pointers. Combining
these facts establishes the theorem. ⊓⊔

For example, we can apply this theorem with respect to a sequence of n
updates of a zip-zip tree that can be performed in O(n log n) time and O(n)
space w.h.p., e.g., to provide a simple construction of an O(n)-space planar
point-location data structure that supports O(log n)-time queries. A similar
construction was provided by Sarnak and Tarjan [23], based on the more-
complicated red-black tree data structure; hence, our construction can be viewed
as simplifying their construction.

Theorem 9. The height of a zip-zip tree, T , holding a set, S, of n keys is at
most 3.82 log n with probability 1− o(1).

Proof. As in the proof of Theorem 4, we note that the depth, X, in T of the i-th
smallest key, xi, can be characterized as follows. Let

Li =
∑

1≤j<i

Xj , and Ri =
∑

i<j≤n

Xj ,

where Xj is a 0-1 random variable that is 1 if and only if xj is an ancestor of
xi, where xi is the i-th smallest key in S and xj is the j-th smallest key. Then
X = 1+Li+Ri. Further, note that the random variables that are summed in Li

(or, respectively, Ri) are independent, and, focusing on E[X|C], as in the proof
of Theorem 4, E[Li] = Hi − 1 and E[Ri] = Hn−i+1 − 1, where Hm =

∑m
k=1 1/k

is the m-th Harmonic number; hence, E[X|C] = Hi +Hn−i+1 − 1 < 2 lnn− 1.
Thus, we can apply a Chernoff bound to characterize X by bounding Li and
Ri separately (w.l.o.g., we focus on Li), conditioned on C holding. For example,
for the high-probability bound for the proof, it is sufficient that, for some small
constant, ε > 0, there is a reasonably small δ > 0 such that

P (Li > (1 + δ) lnn) < 2−((1+ε)/ ln 2)(ln 2) logn = 2−(1+ε) logn = 1/n1+ε,

which would establish the theorem by a union bound. In particular, we choose
δ = 1.75 and let µ = E[Li]. Then by a Chernoff bound, e.g., see [3,15,18,19,25],
for µ = lnn, we have the following:

Pr(Li > 2.75 lnn) = Pr(Li > (1 + δ)µ)

<

(
eδ

(1 + δ)1+δ

)µ

=

(
e1.75

2.752.75

)lnn

≤ 2.8−(ln 2) logn

≤ 2.04− logn

=
1

nlog 2.04
,

which establishes the above bound for ε = log2 2.04−1 > 0. Combining this with
a similar bound for Ri, and the derived from Markov’s inequality with respect to
E[X|A] and E[X|B], given in the proof of Theorem 4 for the conditional events
A and B, we get that the height of of a zip-zip tree is at most

2(2.75)(ln 2) log n ≤ 3.82 log n,

with probability 1− o(1). ⊓⊔

